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Abstract

This project gives an introduction to the field of parallel computing and the parallel 

computing model: BSP (Bulk Synchronous Parallelism). The aim of this project was 

to carry out the implementation and analysis of two BSP problems.  The parallel 

broadcast problem and parallel matrix multiplication were implemented, several 

experiments were run, and the results were analysed. Analysis of the results revealed 

that the experimental results didn’t always match what the BSP model predicted, and 

this was highly dependent on both the type of architecture running the code and the 

optimisation of the code.
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Introduction

Parallel computing is a field in which computer software is run in parallel, using 

multiple processors. Using the BSP model (model of parallel programming) this paper 

discusses and analyses algorithms used in parallel computing.

4.1 Reasons for choosing the field of parallel computing

I had little previous knowledge of parallel computing before I began this project. My 

knowledge was very much a Hollywood tinted eyed view of what parallel computing 

was like. I found the topic, however, quite intriguing; because I was aware of the 

benefits that parallel computing could give in speeding up computations. I found the 

concurrency course that I had completed in the 2nd year of this course very interesting. 

It introduced the concepts of having separate processors working together on a 

problem, and how to get them to working together. However, this was purely on a 

single computer with virtual processors and the idea of taking programs and running 

them over several computers seemed very interesting. I had also heard of work under 

taken by a previous 3rd year student who took a sequential neural network and coded it 

in parallel. Experimentally this resulted in measurable speed increases.

During the course I’ve seen a lot of mathematical analysis of computing problems, but 

I’ve never really seen any of the code implemented and demonstrated. As such I was 

keen to do some experiments and compare the results to the mathematical analysis.

The example that caught my imagination was the ‘Sieve of Eratosthenes’ algorithm, 

for calculating prime numbers: You have several processors, the generator, and 

collector and sieve processors. The generator generates numbers increasing by one, 



which it passes to the sieve. The first number each sieve receives is prime, each 

subsequent number it receives is tested as prime, if it can be divided by the number 

stored its thrown away, otherwise its passed on to the next sieve. Once complete, the 

number stored within each sieve is passed on to the collector. Each Sieve(i) dumps its 

first input to collect, and for i<N subsequently passes on to sieve(i+1) all non 

multiples of that number. Conceptually it is very interesting having discrete 

processors all working together in parallel on a particular problem.

4.2 Sequential computing versus parallel computing

An example of Sequential computing could be someone building a wall; it may take 

them 10 days to complete the task working on there own. However if you had 10 

people working on the wall at the same time, and split the work up evenly, potentially 

you could complete the wall in a single day. This raises the interesting questions about 

how to organise the team of people, how to partition and share the work evenly, and 

how to manage them so they all work together. 

In the context of this coursework I am using BSP-lib to manage the processes with the 

partitioning of the work and organisation of the processors is up to the coder. The 

structure of the BSP makes this process easier. Then of course you can have 

specialisation where different processes are performing particular jobs, and this 

carries on to the difficulty of designing parallel code. Also, that the implementation 

doesn’t directly allow a speed up say divide the problem by 10 processors and you get 

a multiple of 10 speed up. Among others, these are issues/themes that were analysed.



4.3 Why parallel computing?

Sequential computing is limited by the hardware we have. There is some speed up to 

be gained from software. By improving the code and methodologies for coding you 

can increase the performance. However, none of these give huge leaps in 

performance. Thus, the performance of sequential computing is largely limited by the 

speed of the hardware we currently have. Of course simplicity in sequential 

computing has its advantages. Parallel computing offers another dimension to this that 

is not limited by the speed of a single processor, rather the design of the problem and 

the number of processors over which the problem is shared. This gives huge 

performance benefits in performance, without requiring cutting edge technology.

4.4 Aims and Objectives

 “One of the promising trends in parallel computing is the BSP model. Many 

interesting algorithms have been designed for this model, but few of them 

implemented or studied from the practical point of view” – Dr. A. Tiskin.

The above quote gives the main objective for this project; that is to implement and 

study some interesting algorithms from a practical point of view. Firstly I wanted to 

extend my knowledge of parallel computing, secondly I wanted to learn how to run 

parallel software, and thirdly I wanted to learn how to write parallel code.

The main goal of this project was to learn something new about BSP algorithms, by 

investigating some of these BSP algorithms I intended to discover were the 

mathematical predictions would hold experimentally.



An aim of this project was to have as much information on the success and failures in 

order to allow another student to use it as a resource; to start a project on BSP or even 

continue the project from where I left off. During my research I looked at another 

project, which covered a similar area. I found the project inaccessible, hard to 

understand the tangible results achieved, and I did not understand the code that had 

been implemented. As such my aim is to make my project report as clear as possible 

so another student could pick it up and take it further.

4.5 What I did

Firstly I researched the area of BSP, initially reading about the mathematical model 

and then learning about how to use the BSP-lib software library. A lot of this material 

can be found in the background section. There is also some material on using the 

BSP-lib, which can be found in the appendices.

Next, I looked at the parallel broadcast problem. This is the problem of how to 

broadcast data between all the processors in the optimal time. There are two main 

algorithms that achieve this; the question is which one is optimal. I implemented the 

algorithms and carried out experiments to answer this question. I have analysed my 

results, and in this report you can find out the answer to this problem for the different 

architectures I looked at.

Finally I looked at parallel matrix multiplication, of which, there are numerous 

algorithms for parallel multiplication, I set out to implement some and find out which 

was the best. Only one parallel matrix multiplication algorithm was implemented, the 

results show that it performs worse than sequential matrix multiplication on the 

architecture tested on. The analysis section gives more details.



4.6 Structure of this report

The project report is split into three main sections; background information, the 

parallel broadcast problem and parallel matrix multiplication.

All the background information that I spent the first part of the project researching can 

be found in the background section. This gives an introduction to the BSP model, the 

mathematical model behind it, and the BSP software implementation that I used for 

this project. It also contains information about the architectures of the computers that I 

used for this project.

The second section contains the work I did on the parallel broadcast problem. It gives 

the background information about the problem. Included is an explanation of how the 

algorithms work, how they were implemented and how the code works. In the 

experimental method section I explain which experiments conducted, and how I went 

about setting up the experiments and capturing the results. The results and analysis 

can be found in the appropriate section.

The third main part of the project contains the work carried out on parallel matrix 

multiplication. It is structured similarly to the parallel broadcast section. Firstly I 

cover the background material. Then I explain what experiments were carried out. 

Finally the results and analysis for matrix multiplication are included.

4.7 Report Organisation



I suggest that the report should be read sequentially, the background information on 

BSP should be digested before reading the rest of the report. To understand the results 

and analysis of the two problems tackled I suggest the background information for 

each problem is read first.



Background

This section summarises the background material concerning the BSP model, BSP-

lib, and the computer architectures that I used for this coursework.

5.1 What is the BSP Model?

BSP stands for Bulk Synchronous Parallelism. It is a model or paradigm for parallel 

computing. There are a number of different models for parallel computing including 

blackboard, phone call/handshake, and e-mail type models. BSP is an example of an 

e-mail type model. 

The blackboard model is where anyone can read or write on the blackboard, 

representing a global memory. The phone call model is a handshake type model; for 

example a person would call someone on the telephone. They then wait for the other 

person to receive the call and pick up the receiver, once done they can pass 

information. In this way a processor sends a message to another processor requesting 

a read or write, and then waits for that processor to respond.

The e-mail model can be thought of as a contrived system whereby workers are 

allowed to send and receive messages from 9:00 to 10:00. They then continue with 

there work, and send and receive e-mails the following day between 9:00 and 10:00. 

This is similar to how the BSP model works. So each process works independently, 

then at a set time the work stops and messages are exchanged between processors. 

Once the information is exchange work continues.



In BSP work is partitioned as the e-mail model suggests. These partitions are called 

super-steps, a super-step being the duration of time in which some amount of 

processing occurs locally, and then global communication and synchronization 

occurs.

5.2 The BSP Super-step

SUPERSTEP

=

PROCESSING + COMMUNICATION + BARRIER SYNCHRONISATION

A super-step is made up of the local processing, global communication and barrier 

synchronization. During the processing stage each process processes data stored 

locally, and is unable to access data from any other processor. During communication 

processing stops and movement of data occurs; each processor sends and receives 

messages alternatively handling read and write requests.



As you can see from the above diagram of a BSP super-step, local processing is 

followed by global communication and finally barrier synchronization. It is important 

to note that read/write or send/receive calls are made throughout the local processing 

period, it is only during global communication in which data is transferred. Also 

barrier synchronization performs the important function of making all transferred data 

available to local processors once the global communication is complete.

5.3 The BSP Computer and its mathematical model

Having this fixed structure of super-steps has negligible affect on the performance of 

parallel programs. The advantages include having a very simple mathematical model 

in which to analyse programs.



The diagram above gives the conceptual idea behind the BSP computer or the BSP 

architecture. The computer architecture used by BSP can be though of as a series of p 

processors “Nodes”, each with local memory, connected by a network. The model is 

independent of the topology of the network, as such we do not have to concern 

ourselves with the network topology when making calculations, this cost is 

incorporated in the constants for the equation. The cost model is based on two main 

parameters g and h.

p = number of processors

l = number of time steps for “Barrier Synchronisation” (latency)

g = permitivity of the communication network (gap).

            (Total number of local operations performed by all processors in 1 second)

            (Total number of words of data delivered by the communication network.

              In one second – in a situation of continuous traffic)

s = time of the super-step

So l and g are the parameters dependent on the architecture that you are using, the 

speed of the processors and the network are both factored in.



w = max(number of operations on any one processor during S)

hs = max(number of messages sent in S by any processor)

hr = max(number of messages received in S by any other processor)

s = w + max{ hs, hr } . g + l

The total time required for a BSP computation is equal to the sum of each of the 

super-steps. An h relation is the communication pattern in which each processor sends 

or receives maximum of h messages.

S = sum of all the super-steps

S = W + H . g + l     

W is the sum of all the local computations; H is the sum of all the h-relations. W, H 

and S can be thought of as functions of the network and the processors, f (n, p). The 

above equation for calculating the BSP computation time makes calculation as simple 

as for sequential programs. BSP is to parallel as Von Neumann’s model was to 

sequential programming. The key advantageous of the BSP paradigm is that it gives 

us a stable framework in order to develop software, which is portable, and 

architecture independent.

5.4 BSP-lib, the BSP software library

The BSP-lib, BSP Programming library, is the implementation of BSP that I used for 

this project. Supplied by Oxford Parallel computing, it was the software library 

suggested by the project supervisor. It was convenient as it was already set up and 



working on the architectures that I carried out testing on. Additionally my project 

supervisor provided support for the BSP-lib software library.

BSP-lib is easy to use, with some helpful material and a full on-line manual (see 

references). BSP programs can be written using the languages C or Fortran, for this 

project I chose to use C. Firstly because I had some prior knowledge concerning using 

C and secondly because there was a lot more tutorials and example information for 

BSP coded in C.

The code is written as Single Processor Multiple Data (SPMD). This means one block 

of code is written, which is run simultaneously on each processor you start. 

BSP-lib provides two methods for communication, Bulk Synchronous Message 

Passing (BSMP) and Direct Remote Memory Access (DRMA). BSMP involves 

sending messages between processors and having the concept of a queue for each 

processor to receive messages into. DRMA allows each processor to carry out a get or 

put action on another processors memory, this is done through the process of 

registration, whereby each processor calls BSP registration primitive, which creates a 

global registration and allows processors to reference memory in other processors.

5.5 Computer Architectures used to run the parallel code

The main architecture used was a cluster of AMD K6-2 PCs and individual SUN 

workstations in the DCS department at the university of Warwick. BSP-lib allows you 

run code on a single machine simulating multiple processors, i.e. running concurrently 

on a single machine, which was useful for testing code initially before I learned how 

to run the code parallel. The system specification of the PCs was AMD K6-2, most 



266MHz processors running at 281MHz, with 64MB of memory, running SunOS 5.8. 

The BSP parameters are as follows. These are the official parameters that come in the 

BSP-lib parameter database, limited to only 2 processors and 4 processors:

Cluster of Solaris Workstations

s (Mflops/s) P (no procs) l (flops) g (flops/word)

17.421 2 83007.0 176.09

18.128 4 164505.0 237.21

* Source the BSP-lib parameter database

Running on a single Sun workstation gives the following values for the parameters:

Single Workstation

s (Mflops/s) P (no procs) l (flops) g (flops/word)

39.650 2 689.6 15.8

39.600 3 1730.5 17.1

37.481 4 33064.9 1117.85

Cluster of Pentium Pro PCs (266Mhz Pentium Pros with 512K cache connected by 

10Mbit Ethernet)

s (Mflops/s) P (no procs) l (flops) g (flops/word)

61 1 85 1

61 2 52745 484.5

61 4 139981 1128.5

61 8 539159 1994.1

61 10 826054 2436.3

61 16 2884273 3614.6



Interestingly a dedicated parallel architecture is not required, as such the code can be 

run other the cluster of workstations that are in the DCS lab.

There were 70 lab workstations in total. BSP-lib was configured to allow 16 

processors initially; this was reconfigured to 32 at a later date. All the 

communications across this network are at the same speed. The network comprises of 

3 switches, one master and two slave switches, together they work as one large 

switch. Each system is plugged into one of the three switches which connect to a sun 

Ultra-5 which then plugs into the central network, connections are 100mb.

I used the Oscar supercomputer at Oxford University. I submitted my code and test 

scripts to my project supervisor who then submitted this to the Oscar computer to be 

run. The computer is a Silicon Graphics Cray Origin 2000 parallel computer. Tested 

with up to 64 processors. It has in fact got 96 processors in total. System specification 

includes processing power of 96 MIPS, 195 MHz, R10000 processors, each with 256 

Mbytes of RAM. The BSP parameters for Oscar (an origin 2000 supercomputer);

Origin 2000

s (Mflops/s) p (no procs) l (flops) g (flops/word)

100.7 1 286 1.36

2 804 8.26

3 1313 8.36

4 1789 10.24

5 2474 11.06



6 2963 12.25

7 3867 14.28

These values come from the parameter data published on the Oxford BSP-lib website 

(http://www.bsp-worldwide.org/implmnts/oxtool/params.html - origin)

http://www.bsp-worldwide.org/implmnts/oxtool/params.html#origin


Parallel Broadcast

Theory

During the first part of my project I looked at the parallel broadcast problem. The 

parallel broadcast problem concerns the transfer of data from one process to all other 

processes. Under certain circumstances a processor wishes to send data to all other 

processors taking part in the parallel computation. To make parallel applications as 

efficient as possible we would seek a way to reduce the amount of time it takes to 

send this amount of data. Potential we are sending n amount of data to p processors, 

which in total gives n x p data transferred. Of course this data transfer does not have 

to occur sequential, there are other algorithms then just sending out n x p data n of 

which is received by each processor; this method is called the direct method. 

Alternatively we can spread the cost over the several super-steps, reduce the amount 

of data sent by anyone processor, these two main algorithms are 2-Phase and Tree. 2-

Phase is a two-step process in the first super step the source processor sends a fraction 

of the data to each processor. A total exchange then occurs whereby each processor 

then sends its share of the data to all other processors. In the tree method, being a 

binary tree, at each step data is sent to another processor, forming a tree, so on each 

super-step a tree of nodes is built up which are sending data to further processors. 

Each of these methods was implemented, with experiments carried out to seek out 

which was the optimal. As I will show the mathematical analysis suggests that 2-

Phase is more efficient, the experiments carried out looked to prove or disprove this.



2-Phase Broadcast

The 2-Phase method takes two super-steps. During the first super-step the source 

processor divides up the data to be broadcast, and sends an equal amount to each 

processor, that is each processor then receives n/p amount of data. At the beginning of 

the second step the data to be broadcast is shared equally amongst all the processors, a 

total exchange then occurs. A total exchange is when each processor sends its data to 

all other processors. So each processor sends its share of the data (n/p) to p (to be 

more accurate p-1) other processors. At the end of the second super step each 

processor as receives p lots of n/p data, thus the broadcast is complete.

Communication cost = 2Ng (2n)

Synchronisation cost = 2l (2)

p+1 processors total

p
1

p
3

p
4

p
2

p
p

P
0

Super-step 1

n/p

Total 2n (n/p x p + n/p x p)
Data transferred

Source
Processor

p
1

p
3

p
4

p
2

p
p

Super-step 2

n/p

Total Exchange



The communication cost of the 2-Phase algorithm is 2Ng, N being the total amount of 

data transferred, and g being the parameter g. I use the simplification 2n. During 

super-step 1 the source processor sends p lots of n/p amounts of data. The maximum 

amount of data received by any processor is n/p, but the maximum amount of data 

sent by any processor is p x n/p which equals n. Thus the h-relation is of order n. 

During the second super-step, a total exchange occurs, whereby each processor now 

sends out its n/p piece of data to all other processors, that is n/p x p which means the 

h-relation is of order n. Thus the communication cost is 2n (n from 1st super-step + n 

from 2nd super step). The synchronisation cost is 2l, as there are only two super-steps.

Super-step 1 Super-step 2

N= 8192



The BSP profile graph above (see appendices for how to read these graphs) shows the 

profile for the 2-Phase algorithm, working over 16 processors with 8,192 integers to 

be broadcast (64KB). During super-step 1, unfortunately its difficult to see on this 

diagram, but there is a small bar, a single processor sends out approximately 4KB of 

data to each processor (so the bar shows a total of 64KB data communicated). During 

the second super step each processor then sends out its 4KB of data to all other 

processors, so in total each processor sends out 64KB of data, and receives 64KB of 

data during the second phase. This second super step is called a total exchange. The 

broadcast is then complete.

The code is included in the appendix. The code is based on "bcast_ex4", part of the 

BSP Tutorial by Bill McColl and Jonathan Hill, 

oldww.comlab.ox.ac.uk/oucl/oxpara/courses/tutorials/

The parallel code for SPMD mode is split out into the start_spmd() function. The code 

to perform the broadcast can be found in the broadcast_ints() function, just before this 

is called bsp_dtime() is called to start the timing of the broadcast. This transfers a 1D 

array of integers from a specified source processor to all other processors. Firstly the 

destination array (on each processor) is registered. Then During the first main super-

step (there are several other super-steps but they insignificant as they only involve 

registration/deregistration of data areas) the source processor does a bsp_put() on each 

of the processors with part of the array to be broadcast. A put is made to each 

processor in turn, the data transferred is at the offset given by (n_over_p * i) * 

sizeof(int). n_over_p is n/p the size of the data to be transferred, i is the processor 

number, and sizeof(int) gives the offset in bytes. As a minor technicality if  p is not a 

factor of n then the last processor will get an array of slightly smaller length. At this 

point bsp_sync() is called, and this is the end of the first super-step.

http://www.comlab.ox.ac.uk/oucl/oxpara/courses/tutorials/


During the second super-step a total exchange occurs amongst the processors. All 

processors execute a for loop, which involves calling bsp_put() on each processor and 

putting there part of data in the array of the destination processor. The array offset of 

the destination array is calculated depending on the processor number, which is the 

same offset as the data in the source array. The bsp_sync() function is called and that 

is the end of the second super-step. The destination array is then deregistered.

Processor zero then outputs the duration of the broadcast by calling bsp_dtime() to get 

the duration of time from the last time bsp_dtime() was called.



Tree Broadcast (Binary Tree)

The Type of tree broadcast I looked at was binary tree, whereby the communication 

pattern forms a binary tree. As you can see below;

Conceptually the communication paths between the processors become a binary tree, 

as you can see from the above diagram. During the first super-step the source 

processor sends its data to another processor. These processors form the nodes of the 

tree, during the next super-step (super-step 2) both nodes then send data to a further 

two nodes, therefore there are now four nodes in the binary tree. At the next super-

step (super-step 3), or next level of the tree each of the four nodes then sends to a 

further processor each, and there are now eight nodes in the binary tree. This 

continues depending on how many processors there are involved in the broadcast.
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Note the nodes coloured grey with the dashes between, indicates they are involved in 

a particular super-step, but no data is being transferred to that processor.

Communication cost = (Log p) Ng (nlog p)

Synchronisation cost = (log p)l (log p)

The depth of the binary tree is proportional to logarithm of the number of processors. 

As such the number of super steps is calculated as log p. The communication costs are 

given by nlog p. This is because at each super-step a maximum of data size of n is 

transferred between any two processors. And because there is n data transferred per 

level of the binary tree, the total communication cost is the number of super steps 

multiplied by the amount of data per super-step (nlog p).

N= 8192

Super-step 1 Super-step 2 Super-step 4

Super-step 2

Super-step 3



See the appendices for details on how to read BSP profile diagrams. The above BSP 

profile is for Tree broadcast with 16 processors involved in the broadcast of 8,192 

integers (64Kbytes of data).  During Super-step 1 processor 16 sends 64KB to 

Processor 0. P16 and P0 now have the 64KB of data, during super-step 2 P16 and P0 

transfer 64KB of data to P1 and P2. At the start of super-step 3 there are now 

conceptually 4 nodes in this level of the binary tree, each of which sends 64KB of 

data to one other processor. In super-step 4 there are now conceptually 8 nodes in this 

level of the binary tree, each of which transmits the data to another processor. This 

works out quite nicely as we have a balanced binary tree.

The code is based on the code for 2-phase broadcast. The difference being the 

broadcast_ints() function, and this code is based on and adapted from the code given 

in the paper "Broadcasting on the BSP model: Theory, Practice and Experience" by 

Alexandros V. Gerbessiotis.

The key thing to note is that at each super-step all processors that have received that 

data send the data onto another processor. Note the source processor can be any of the 

processors, so we use a temp_pid which gives the relative distance from the source 

pid. This is done using the expression ((pid-fromp)+nprocs)%nprocs), so to simplify 

the source processor can be thought of having pid 0, and  then all subsequent 

processors having sequentially greater pids. The processors that have received the 

data are those with processor id less than what is called the ‘mask id’. This is just the 

number of processors that have received the data so far. Because it is a binary tree we 

can calculate the number of nodes at each level, which is 2^(depth of tree). And 

because each processor that has received data is a node at that depth of the tree the, 

therefore the process ids that have received data are less than the mask pid.



Each processor then sends the data to one other processor. (There is capability for n-

ary type trees, but this is out of scope of my current discussion).



Direct Broadcast (1-Phase broadcast)

After looking at 2-Phase and tree, I then looked at the most basic broadcast method; 

namely direct broadcast, or 1-Phase broadcast. This is the naive method whereby the 

source processor sends all the data to all the processors. This occurs in 1 super-step 

and has n*p amount of data transferred. Thus theoretically it is an upper bound on the 

time that should be taken to compute the broadcast. It should be inefficient compared 

to the other methods, and thus can be used as a control.

As you can see the algorithm is a one step processor. The source processor sends the 

total n data to each processor. At the end of the 1st super step each processor has 

received n amount of data, thus in total n x p amount of data is transferred.

Communication cost = pNg (np)

Synchronisation cost = l (1)
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The communication cost is given by the equation pNg, and the synchronisation cost 

given by l. As such communication is of order np, and synchronisation is order 1, as 

only one super-step occurs. So to send 10MB of data to 10 processors would cost a 

transfer of 100MB during one super-step.

See the appendices for an explanation of how to read the BSP profile graphs. What 

the above graph shows is the profile for the direct broadcast program. The experiment 

was run for 16 processors, with 8,192 integers being broadcast (64KB). Thus in total 

15x(8192x8)/1024 = 960 Kilobytes was transferred in total, which you see from the 

top bar the source processor (processor 0), sends this data. Each of the other 

processors then receives 64KB of data, as you can see from the bar along the bottom, 

which is divided into 64KB seconds corresponding to the data received by each 

processor.

N= 8192



Notice that it appears data is only transferred to 15 processors, not the full 16 involved 

in the computation. This is because the source processor transfers data to itself, which 

just requires a local memory copy in the C code. As such it does not appear in the 

BSP profile as a data transfer.

The code, which can be found in the appendix, is based on the code for 2-phase 

broadcast. The difference being the function broadcast_ints(). Instead of the 2 super-

step process, one super-step occurs, during this step the bsp_get() statement is called 

by each processor, to get the array from the source processor. Bsp_sync() is then 

called and the array is transferred to each of the processors.

Overall Equations

The overall costs;

Algorithm Communication Synchronisation

Equation Order Equation Order

Direct (1-Phase) pNg  (np) l (1)

Tree (Binary) (Log p) Ng (nlog p) (log p)l (log p)

2-Phase 2Ng (2n) 2l (2)

There are two claims made by the theoretical analysis:



1. When N is small (N < 1 / (pg – 2g)) use the one-stage broadcast (direct 

broadcast).

2. The 2-Phase broadcast is always better than the tree broadcast when p > 2 (it 

should be the same when p-2).

See method for the experiments carried out, and see the results for what experimental 

data I got.

Alternative Tree Broadcast

On setting up a repeat of the tests I believed that the tree method was working 

incorrectly. By studying the graphical profile I believed that the code was working 

incorrectly. This is because I miss-understood how the tree algorithm was working, I 

believed that each processor should be sending data to two other processors, and then 

those two processors send data to a further two processors each. This would mean that 

once a processor had sent the data it would become redundant. The mistake here is 

that I was forgetting that each processor stays as a node in the tree, and therefore for a 

binary tree each node only sends to one other processor. Sending to two processors 

would give you a ternary tree. However all processors that have sent data are then not 

used any further within the broadcast, so we have the algorithm;



This code has not yet been tested.

Internal Broadcast Primitive

I decided to also look at the internal broadcast primitive. This is built in to the BSP 

library. And I thought it would be a good idea to compare the code I am testing with 

the built in broadcast. I currently do not know by what method the BSP broadcast 

works, but would have expected it to be optimised for the procedure of broadcasting.

This code has not yet been tested.
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Experimental Method

Composition of the timing data

The timing information given by the results needs to be explained further. The 

programs output a time from when the bsp_begin() has been called, and the timer 

commences when all the processors have started. The timer is then stopped before 

bsp_end() is called, thus the timing data outputted by the C code is purely the time 

taken for local processing, and communication and synchronisation costs. All start-up 

costs/shut down costs are not included in this timing information. This is why the 

Unix command time gives larger values for the timing, and the programs total running 

time is longer than the results shown. This is due to the start-up costs of the BSP 

programs. However these start-up costs do vary, and are not accurate, and it is not 

appropriate to include them in the total time for the programs. I have also chosen to 

leave them out of the overall results.

Preliminary tests and data-ranges

I Ran the experiments on Parallel broadcast 2-Phase and Tree on the DCS lab 

computers. These results can be seen in the results sections. The data sizes used were 

as follows;

Bytes in a Kilobyte 1024
Kilobytes 32 64 128 256 512 1024
Bytes 32768 65536 131072 262144 524288 1048576
N (number of ints in array) 8192 16384 32768 65536 131072 262144

The choice was related to the experiments carried out in the study*****, to allow the 

results to be compared with that study. Firstly I wanted to get some results, to get 

some test data to see how the code was performing, and secondly I wanted a 

reasonable spread of data over a range of data sizes, the data sizes spreads over 3 

orders of magnitude.



The number of processors used in the testing was constrained by the maximum 

number of processors that could be used on the DCS lab machines implementation of 

BSP-lib was 16 at this time. The second factor was that I was initially doing tests 

manually so didn’t want to test over too large a range of processors. I chose 5, 10 and 

16 processors to test on, which gave a reasonable range and would allow me to 

extrapolate. This gave me initial test values that gave me an idea of the different 

broadcasts relative performance, and also that they were working correctly. Some of 

my initial summary data can be seen:

n P Tree (binary) /sec 2-Phase /sec
1 2 0.00896 0.001090

0.001006 0.001078
0.001091 0.001146
0.000733 0.001071

10,000,000 2 0.493 2.471
0.506 2.449

So successfully got 2-phase and tree code running at this stage. The initial times 

showed the Tree algorithm to be faster than two-phase, and with greater data size it 

proved to be significantly faster. However a second test found the contrary that over a 

limited data range the 2-Phase broadcast was better:

n P Tree (binary) /sec 2-Phase /sec
3 8 0.091354 0.060914

0.094823

3,000 8 0.125569 0.099498
0.114308 0.097929
0.104811 0.123149

3 10 0.149614

3 12 0.197964 0.099900
0.167728 0.112238



0.180177 0.082062

Shell scripts

Due to the large amount of data being generated, even over quite a small data range, 

and the duration of time required to carry out each one of the tests I developed some 

shell scripts that could run the tests automatically over a range of input values. Also it 

is difficult to draw any conclusions from these results, as there are few repetitions 

over a small range of data input, due to this limitation, I did not think they were 

statistically any good, hence why I set up the shell script to run many of repetitions.

The shell scripts can be seen in the appendix. These tests generated large output files 

of data, which required processing to get into a meaningful form, which can be seen 

in the results section. A full outline of how the data was processed can be found in the 

appendix. These scripts were later updated to work with the Oscar super-computer.

2-Phase versus Tree

The next tests I decided to run were based on the data ranges discussed above. Also I 

was aware that the code was outputting different amounts of data, as there was some 

debug information, I ran several tests to see if this was making a significant impact on 

the performance of the code. The tests proved it wasn’t, but I stripped out the debug 

information and ran the code in non-verbose mode.

2-Phase

Tree



It was once I ran these tests I realised further investigation was required in order to 

verify the relationships within the data, and find appropriate explanations. On looking 

at the data the conclusion was that it diverged from what was predicted; in that the 

results showed parallel tree was better than 2-phase. It basically shows that 2-Phase is 

a lot worse than the tree method for large messages. This is in contrast to what the 

theory says, and also what the paper by Juuvlink and Rieping suggested. In this paper 

they suggest that BSP predicts that the 2-Phase algorithm is superior, there 

experiments show that for smaller data-sizes 2-phase is worse than tree, and for larger 

data sizes 2-Phase is better than tree. I’ve found 2-Phase better than tree but only for 

messages less than a certain size, the opposite of what this study found. This could be 

to do with the set-up of Unix workstations on the network. See results section for a 

discussion.

At this point I chose to investigate the direct broadcast method. As such I run tests 

over the same data range. You can see the results in the results section. I did not repeat 

the tests for the other two methods of broadcast. It was found that the direct broadcast 

method was better than the two supposedly optimum methods for parallel broadcast, 

however as the tests were carried out at different times they are not directly 

comparable.

Oscar Supercomputer testing

At this point the use of the Oscar supercomputer was made available to me. I run the 

tests for 2-phase and Tree. The results can be seen in the results section. The code did 

not need to be adapted, though the shell scripts had to be changed, see the appendix.

The tests for 2-Phase and Tree broadcast were run on the Oscar supercomputer this, 

was for a larger range of data values from 32KB to 65536KB (66 MB) of data.



Direct Broadcast Re-test

The direct broadcast test was re-run on the DCS computers. Firstly to act as a control 

for further tests, secondly to see what the performance was like relative to the 

previous tests, and finally to see the relationship between number of processors and 

the time to broadcast for a fixed data-size.

High Performance 2-Phase Broadcast

The final test carried out was high performance 2-Phase broadcast; the tests were run 

on the DCS computer. The aim of this test was to see whether use of buffered bsp 

primitives was causing the unexpected results in the experimental data. Secondly the 

test was run to get a more accurate breakdown of the timing of the program. The 

Bsp_timed() was used to time each of the super-steps in which the 2-phase broadcast 

was carried out, and separated out the initialisation code, and the extra super-steps for 

registration of variables. As such this test gives the timing information for the exact 

duration of the two super-steps in which broadcast is carried out.



Results And Analysis

Firstly I’m going to go through the two broadcast methods separately. I’ll then make a 

comparison between the two types of broadcast. I’ll ten go through the analysis of the 

test results for all the other tests performed. Please note that the raw data can be found 

in the appendix.

2-Phase versus Tree

Firstly I’m going to look at the affect of changing the data sizes on the time to 

broadcast. I’ve included the data for the two broadcast methods as you can see below. 

This contains the experimental data, including the mean broadcast times, standard 

deviation, min and max, and results population – being the number of repetitions for 

that particular result.

Analysis of 2-Phase broadcast

Broadcast Type: 2-Phase     
   Time /seconds

Number of 
Processors

Data 
size 
/Kilobytes

Results 
population Mean

Standard 
Deviation Min Max

5 32 6 0.085144 0.003240 0.082422 0.090693
5 64 6 0.127187 0.011166 0.112629 0.142551
5 128 7 0.215030 0.013613 0.192278 0.230880
5 256 6 1.073815 1.589247 0.376829 4.317352
5 512 4 6.679988 1.212657 5.776688 8.468453
5 1024 7 26.430414 3.000400 23.253664 31.087066

10 32 5 0.166666 0.019588 0.146870 0.196538
10 64 6 0.207706 0.021229 0.177019 0.228850
10 128 6 0.294307 0.018273 0.277004 0.322858
10 256 5 0.566967 0.072726 0.504733 0.685405
10 512 3 2.981274 1.236566 2.068619 4.388596
10 1024 3 19.298234 4.383064 15.381767 24.032654
16 32 5 0.275207 0.036164 0.217605 0.315697
16 64 4 0.333766 0.022228 0.309233 0.361478
16 128 5 0.458612 0.065447 0.398760 0.561652
16 256 3 0.600059 0.047819 0.567072 0.654900
16 512 4 1.543545 0.231198 1.286623 1.848100



16 1024 3 12.989134 1.944890 10.782883 14.455493

The results show a consistent increase in time with increasing data size broadcast.
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From looking at the above graphs it shows a curve, this indicates time is increasing in 

polynomial time or even exponentially relative to the data-size.
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There is an anomaly in the results; increasing the number of processors is decreasing 

the time to broadcast. For 128KB and under a linear relationship can be seen, and data 

is broadcast quickest on 5 processors and slowest on 16 processors. After 128KB the 

times for 10 and 5 processors to broadcast quickly increases.
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The above graph shows that the running time is decreasing with more processors.
Polynomial model

This is done by plotting the log of each of the variables on a graph; a straight-line 

graph indicates that the relationship is polynomial. The equation for the straight line is 

calculated using the approximation techniques on a Casio CFX-9850G graphic 

calculator.

y = time to broadcast / seconds
x = data size / kilobytes

Model 1 (Full Data)

p=5, y = 2.605   x 10-5 x2 – 7.873 x 10-4 x + 0.1556985
p=10, y = 2.5526 x 10-5 x2 – 7.978 x 10-3 x + 0.6533288
p=16, y = 1.8787 x 10-5 x2 – 7.382 x 10-3 x + 0.81076197

Model 2 (Smaller Data Values)

p=5, y = 2.341   x 10-5 x2 – 2.415 x 10-3 x + 0.1556985
p=5, y = 3.5129 x 10-6 x2 – 7.6479 x 10-4 x + 0.14069533
p=5, y = 1.4391 x 10-3 x2 + 0.24421613

Broadcast Type: 2-Phase    
  Time /seconds



Number of 
Processors

Data 
size 
/KilobytesMean

Model 1 
prediction

Model 1 
difference

Model 2 
prediction

Model 2 
difference

5 32 0.085144 -0.035058 0.120202 0.102390 -0.017246
5 64 0.127187 0.019774 0.107413 0.097026 0.030161
5 128 0.215030 0.289489 -0.074459 0.230128 -0.015098
5 256 1.073815 1.469125 -0.395310 1.071656 0.002159
5 512 6.679988 6.389214 0.290774 5.056010 1.623978
5 1024 26.430414 26.472670 -0.042256 22.229903 4.200511

10 32 0.166666 0.424171 -0.257506 0.145057 0.021608
10 64 0.207706 0.247291 -0.039585 0.155849 0.051857
10 128 0.294307 0.050363 0.243945 0.199015 0.095292
10 256 0.566967 0.283833 0.283134 0.371682 0.195285
10 512 2.981274 3.260081 -0.278807 1.062346 1.918928
10 1024 19.298234 19.249808 0.048426 3.825003 15.473231
16 32 0.275207 0.593776 -0.318569 0.290267 -0.015060
16 64 0.333766 0.415266 -0.081500 0.336319 -0.002553
16 128 0.458612 0.173672 0.284940 0.428421 0.030191
16 256 0.600059 0.152195 0.447864 0.612626 -0.012567
16 512 1.543545 1.956077 -0.412532 0.981035 0.562510
16 1024 12.989134 12.951191 0.037943 1.717855 11.271280

Both the models are compared in the above table, I’ve calculated the values as per 

each of the models and calculated the difference between the actual timing 

information and the models prediction. You can see that the predictions fit poorly, the 

model, which incorporates all the data, only really fits for the largest data-size 

1024KB. As you can see the differences being 0.04, 0.05, and 0.04, so 26.47sec 

versus 26.43sec on 5 processors, 19.25 versus 19.30 on 10 processors and 12.95sec 

compared to 12.99sec on 16 processors. This is due to the influence of the largest 

result. Looking at the model calculated from just the smaller results (32KB – 256KB) 

the predictions fit a lot closer. For 5 processors the differences are 0.017, 0.030, 

0.015, and 0.002, this gives accuracy to about 1 decimal place. For 10 processors the 

model differs further, 0.022, 0.051, 0.095, the predictions are still quite close to the 

model. As with 16 processors, the differences are less than 0.03 seconds, which 

makes the model accurate to 1 decimal place.



Overall the models do not fit closely, however the graphs do resemble a polynomial 

type distribution of results. 

Conclusions

The experimental results appear to deviate from the BSP model. If we trust the 

experimental results this would be because the architecture used is not in fact a true 

BSP computer, and hence why the results are not modelled well by the BSP model. 

This could be due to the network topology, the transport protocol, etc. However we do 

not have enough data to reliably say that the relationship is exponential. It does appear 

that the parameters g and l are varying for different data-sizes so it would be better to 

look at it in terms that the relation should be linear, and work out the parameters g and 

l for this machine, and how they change for different data-sizes.

Another possibility is that the code is not optimal for this type of broadcast. The 

experiment is not designed perfectly. Firstly each repetition requires the program to be 

run from start to finish each time, there was no repetitions in the main loop to allow us 

to avoid the start up costs. Secondly the timing information is for the entire 

bsp_begin() bsp_end() block of code, and so includes any initialisation costs and 

computations. During this initialisation step two integers are broadcast, one that tells 

each processor how many integers are to be broadcast and one that tells each 

processor whether to run in verbose mode or not. Then an array is allocated on each 

processor and populated with data. This is a “for” loop, the number of times it goes 

through the loop is equal to the number of integers to broadcast. As such as the data-

size increases this will be adding to the time to broadcast. Also the broadcast routine 

uses 3 supersteps instead of 2, as the array which receives the broadcast data has to be 

registered and there are some initial costs for calculating the number of integers each 

processors should receive. These all add to the timing to broadcast the number of 



integers. A better experiment would have been to just time the 2 super-steps for which 

the program broadcasts data.

Also it may be due to the network, up to some data-size there data maybe cached/fit 

into a buffer, which improves the performance for smaller data-sizes. For larger data-

sizes the broadcast would thus be un-buffered and performance would deteriate.

BSP Predicted values for 2-phase

So far I’ve commented on what the BSP model predicts that the behaviour of the 

algorithm should be. The actual values that are predicted are as follows.

Broadcast Type: 2-Phase  

Number of 
Processors

Data size 
/Kilobytes Mean Time

Data size – 
Previous 
data size 
ratio

Time - 
Previous 
time ratio

5 32 0.085144  
5 64 0.127187 2 1.49
5 128 0.215030 2 1.69
5 256 1.073815 2 4.99
5 512 6.679988 2 6.22
5 1024 26.430414 2 3.96

10 32 0.166666  
10 64 0.207706 2 1.25
10 128 0.294307 2 1.42
10 256 0.566967 2 1.93
10 512 2.981274 2 5.26
10 1024 19.298234 2 6.47
16 32 0.275207  
16 64 0.333766 2 1.21
16 128 0.458612 2 1.37
16 256 0.600059 2 1.31
16 512 1.543545 2 2.57
16 1024 12.989134 2 8.42



The above table includes a column to show the ratio of the broadcast times, as the 

data size doubles. At each step we are doubling the data-size and for small values e.g. 

32-64KB for 5 processors we see 1.5 and 1.7 times increase in the time. For 10 

processors we see 1.25 times and 1.42 times increase in the time to broadcast. Then 

for 5 processors doubling the data-size from 128 to 256 causes the time to be 

broadcast to increase by 600% from 1.07 seconds to 6.68 seconds. Then doubling the 

data-size again from 512KB to 1024KB increases the broadcast time by about 400% 

(times 3.96). For 10 processors a similar pattern can be seen for doubling the data-size 

from 32Kb all the way through to 256Kb we get an increase in broadcast time up to a 

factor of almost 200% on each doubling of the data-size (as would be expected), 

x1.25, x1.42, x1.93, though all less than the expected doubling. Then doubling the 

data-size from 256Kb to 512Kb gives us an increase of 500% (5.26) and increasing 

from 512Kb to 1024Kb gives an increase of 600% (6.47).

For 16 processors, we can see a similar relationship less than 256Kb, doubling the 

data-size multiplies the broadcast time by 1.21, 1.37 and 1.31. Then for doubling data-

sizes greater than 256Kb time more than doubles 2.57x, 8.42x.

So below 256Kb to broadcast the 2-Phase is performing better than BSP predicts as 

doubling the data-size increases the time to broadcast by a lesser factor. Broadcasting 

more than 256Kb, the 2-phase performs a lot worse than predicted by BSP. 

Performance appears to deteriorate rapidly with increasing of the data-size.

One interesting observation is the variety in the results as the data-size increases the 

variation of the results increases. On 5 processors the Standard deviation is less 

negligible for data of less than 256Kb (0.0032sec, 0.011sec, 0.0136sec…) but 

for data-sizes greater than that the standard deviation increases 1.58sec, 1.21sec, 



3.00sec which is significantly larger, though 95% are within that range so we can 

still be pretty confident about the accuracy of the results.

Please note I was unable to get as many results for larger data-sizes as with more 

frequency, greater data-sizes would cause no timing information to be outputted.

For 10 processors the Standard deviation is small, under 0.08 seconds then for 512Kb 

and above the standard deviation is 1.23 and 4.38.

Interestingly the variation of the results for 16 processors is a lot smaller than for 5 

and 10 processors. For 16 processors the Standard deviation is as small as 1.94sec, 

0.23sec and 0.05sec for the data-sizes 1024Kb, 512Kb and 256Kb respectively.

The reason for the greater variation in the broadcast times I would suggest is due to 

the latency in the network. In terms of BSP it is the two parameters g and l, that 

determine incorporate the performance of the network. L is the “latency” and g is 

“gap”. The latency is the number of time steps for barrier synchronisation, and g is the 

permitivity of the communication network. Both parameters are assumed to be 

constant for a particular architecture. This may not be the case; in fact it is not the 

case on the cluster of Unix workstations. Potentially the performance of the network 

may vary with increasing data communicated on the network. This will be discussed 

later on in the report.

One strange observation from the results is the way in which the broadcast time varies 

for a particular data-size on different number of processors. These results show that 

the greater the number of processors the less time it takes to broadcast the same 

amount of data. This is an unexpected result. As the number of processors increases 



the amount data transmitted in total by the network increases. Therefore performance 

of the network is expected to degrade. 

e.g 2-phase broadcast p=5 N=1024 (datasize)

During total exchange each of the 5 processors sends 1024/5 Kb of data to each of the 

other 5 processors. So the maximum message size is 1024/5, but the total amount of 

data transmitted by the network is 5*1024/5*5 which is 1024*5. For 16 processors the 

maximum message length is 1024/5, but the total data transmitted is 1024*16. 

Therefore with an increase in the amount of data transmitted you would expect 

degradation in the network performance, not an improvement. I ran a series of tests on 

direct broadcast, the results can be seen later on in the report.

The BSP equation for 2-Phase broadcast is as follows;

Comm. = 2Ng

Sync. = 2l

Therefore; time = 2Ng + 2l

time = a . data-size + b, where a and b are constants

In other words time is directly proportional to data-size, and it you would expect to 

find a linear relationship between time and data-size. In other words a straight-line 

graph such as below would have been expected.



One very strange observation is that the larger the number of processors, the less time 

the broadcast was taking on the DCS Lab workstations. This is a very strange result as 

with greater number of processors there are more processors to send data to, and 

therefore a greater amount of data transferred by the network on each super step, 

which would suggest that the broadcast times should increase. When the same code 

was run on the Oscar super computer it was found that the time to broadcast did in-

fact increase with the more processors.

In fact to be more correct you would expect the 2-phase broadcast to be largely 

unaffected by the increase in the number of processors, as the cost is only based on 

the data size. The tree method on the other hand is based on the size of the data and 

the number of processors. Which means you would expect the times of the tree 

broadcast to diverge away from those for the 2-Phase broadcast.

Time for type
Number of 
processors

Data-size 
/Kilobytes TREE 2-PHASE DIRECT

5 32 0.129666 0.085144 0.08934
5 64 0.179916 0.127187 0.124786
5 128 0.496433 0.21503 0.202098
5 256 0.601885 1.073815 0.349762
5 512 2.461492 6.679988 0.679784
5 1024 7.531307 26.43041 1.591121

10 32 0.278171 0.166666 0.138927
10 64 0.385844 0.207706 0.235066
10 128 0.794472 0.294307 0.376475
10 256 1.696721 0.566967 0.841741

a

b
c

y = mx + c
m = a/b

x

y



10 512 3.330218 2.981274 1.777254
10 1024 7.663237 19.29823 4.025822
16 32 0.376909 0.275207 0.245722
16 64 0.429697 0.333766 0.381976
16 128 0.711125 0.458612
16 256 0.995928 0.600059 1.145801
16 512 2.171702 1.543545 2.036489
16 1024 5.15171 12.98913 6.62627



Analysis of the Tree Broadcast

Broadcast Type: TREE     
   Time /seconds
Number of 
Processors

Data size 
/Kilobytes

Results 
population Mean

Standard 
Deviation Min Max

5 32 6 0.129666 0.042368 0.097667 0.177714
5 64 6 0.179916 0.030544 0.159477 0.215028
5 128 7 0.496433 0.102329 0.378469 0.561297
5 256 6 0.601885 0.289138 0.384495 0.930027
5 512 4 2.461492 1.768308 1.214207 4.485178
5 1024 7 7.531307 2.939756 4.594662 10.474165

10 32 5 0.278171 0.029514 0.244122 0.296454
10 64 6 0.385844 0.016273 0.369036 0.401523
10 128 6 0.794472 0.050030 0.764564 0.852230
10 256 5 1.696721 0.145150 1.553768 1.843973
10 512 3 3.330218 0.483317 2.849067 3.815672
10 1024 3 7.663237 0.264015 7.506538 7.968055
16 32 5 0.376909 0.023506 0.352221 0.399021
16 64 4 0.429697 0.010706 0.422931 0.442040
16 128 5 0.711125 0.061774 0.646632 0.769762
16 256 3 0.995928 0.205393 0.851250 1.231017
16 512 4 2.171702 0.343445 1.857665 2.538459
16 1024 3 5.151710 0.265667 4.871218 5.399531

What we see is that with the increase in data-size, we get an increase in the time to 

broadcast. Unlike the 2-phase broadcast where there was the strange result of the time 

to broadcast decreasing with the number of processors, on this test the time increases 

with more processors, as would be expected. This is apart from 16 processors where 

the data-size is 1024KB, the time to broadcast is less than for 5 and 10 processors, 7.5 

seconds on 5 processors, 7.7 seconds on 10 processors it then dipped down to 5.2 

seconds for 16 processors.

p 5 10 16

Data-size / Kilobytes 1024 1024 1024

Time / seconds 7.5 7.7 5.2



The following graphs show the data-size versus the time to broadcast for different 

number of processors.
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Tree, p=10
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Tree, p=16
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The graphs above show a linear relationship between data-size and broadcast time; 

broadcast time increases linearly with data-size, as predicted by the BSP model. 

Looking at the data I believe the times for data-size of 1024 to be spurious result, as 

together the other results can be approximated with a linear line of best fit. It is only 

the larger values that do not fit this relationship; this is highlighted on the above 

graphs. Including these data values in the results would require a logarithmic analysis 

of the data to identify the actual relationship. 

I believe it is acceptable to ignore the largest data values as it is clearly seen 

something strange is happening for larger data sizes, as the time to broadcast is 

decreasing with number of processors. For this reasoning the timings for 512KB and 

on 16 processors should also not be accepted as it is less for that on 10 processors.



We seem to be getting the following pattern, which is a bit strange:

OK this is happening for datasizes less than 1024 KB. However, because the data of 

smaller sizes all fits the linear model, I am going to use that data.

With out the largest data values an equation of each of the graphs can be calculated, 

which will allow the parameters g and l to be approximated for the architecture the 

tests were run on.

Using the graphic calculator analysis we get the following equations:

N = data-size, t = time for broadcast

p = 5, 4.9807x10-3x N – 0.0995853

p = 10, 6.4912x10-3x N + 7.9197x10-3

p = 16, 3.7269x10-3x N + 0.19764633

As you can see from the following table comparing the the above models to the actual 

values gives a reasonably close fit, albeit for the larger data-sizes.

Broadcast Type: TREE    

p

t

N



Number of 
Processors

Data 
size 
/KilobytesMean

Model 
prediction Difference

Relative 
Error

5 32 0.129666 0.0597971 0.069869 53.9%
5 64 0.179916 0.2191795 -0.039264 -21.8%
5 128 0.496433 0.5379443 -0.041511 -8.4%
5 256 0.601885 1.1754739 -0.573589 -95.3%
5 512 2.461492 2.4505331 0.010959 0.4%
5 1024 7.531307 5.0006515 2.530655 33.6%

10 32 0.278171 0.2156381 0.062533 22.5%
10 64 0.385844 0.4233565 -0.037512 -9.7%
10 128 0.794472 0.8387933 -0.044321 -5.6%
10 256 1.696721 1.6696669 0.027054 1.6%
10 512 3.330218 3.3314141 -0.001196 0.0%
10 1024 7.663237 6.6549085 1.008329 13.2%
16 32 0.376909 0.3169071 0.060002 15.9%
16 64 0.429697 0.4361679 -0.006471 -1.5%
16 128 0.711125 0.6746895 0.036436 5.1%
16 256 0.995928 1.1517327 -0.155805 -15.6%
16 512 2.171702 2.1058191 0.065883 3.0%
16 1024 5.151710 4.0139919 1.137718 22.1%

The above data shows the mean times together with the models predictions, the 

difference in times, and the relative error. This is the difference divided by the mean 

times. Those data values in bold are those that I feel deviate from the model the most, 

those having over 15% relative error, meaning the model prediction is 115% or 85% 

of the actual value. The largest errors are for those data values which I have circled in 

the graphs above. For 5 processors that is the times for data-sizes 256KB and 

1024KB, and as you can see from the table below the error is quite large.

Data-size Actual Prediction
256KB 0.601 1.175
512KB 7.531 5.000

The smallest value is also quite out with error of 0.07 seconds giving half the time 

expected.

For 10 processors the largest data-size gives a time 1.008329 seconds out, but this is 

not a very large relative error (13.2%). For 16 processors the largest data-szie gives 

time 4.01 seconds instead of 5.15 seconds again only a 1 second error, but relatively 



insignificant. The 256KB value has a larger error but this is also not highly 

significant. As such I think this model fits correctly.



2-Phase / Tree Model Compare

As you’ve seen the 2-phase algorithm does not appear to conform to the linearity in 

performance as predicted by the BSP model.

If you look at the data for Tree and 2-phase, it appears that 2-Phase is better for 

smaller data-sizes, whereas tree is better for larger data-sizes. For 5 processors we get;
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There appears to be a cut off at 256KB where 2-phase has a shorter broadcast time 

than for tree broadcast, as you can see the ratio is up to half the time to broadcast e.g. 

Data-Size/KB 2-Phase Tree Ratio
32 0.085 < 0.130 0.7
64 0.127 < 0.180 0.7
128 0.215 < 0.496 0.4
256 1.077 > 0.602 1.8
512 6.680 > 2.461 2.7
1024 26.480 > 7.531 3.5



for 128KB 0.215 seconds for 2-phase and 0.496 seconds for tree. Then for over 

256KB the time to broadcast using the 2-Phase method rapidly increases until for 

1024KB its 3.5 times greater.

For 10 processors 2 phase performs better for all data-sizes apart from 1024KB, as 

you can see from the following table;
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As you can see the 2-phase ifs from 30% to 90% the time taken for tree method to 

broadcast.

Data-Size/KB 2-Phase Tree Ratio
32 0.167 < 0.278 0.6
64 0.208 < 0.386 0.5
128 0.294 < 0.794 0.4
256 0.567 < 1.697 0.3
512 2.981 < 3.330 0.9
1024 19.298 > 7.663 2.5



For 16 processors we have:

p=16
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Data-Size/KB 2-Phase Tree Ratio
32 0.275 < 0.377 0.7
64 0.334 < 0.430 0.8
128 0.459 < 0.711 0.6
256 0.600 < 0.996 0.6
512 1.543 < 2.172 0.7
1024 12.989 > 5.152 2.5



For data-sizes up to and including 512KB the 2-phase broadcast performs better, at 

about 0.6-0.8 of the times for the tree broadcast. Then for data-sizes of 1024KB 2-

phase takes 2.5 times longer than for the tree method.

With increasing number of processors trees deteriorates relative to 2-phase. But this is 

balanced by the increasing amount of data transferred by 2-phase. The sharp increase 

in time to broadcast data of size 1024 KB is probably due to the large amount of data 

being transferred by the network.

Analysis of Direct Broadcast

The tests for direct broadcast were run at a later date than for 2-phase and tree, and 

therefore are not necessarily directly comparable.

Broadcast Type: DIRECT     
   Time /seconds

Number of 
Processors

Data 
size 
/Kilobytes

Results 
population Mean

Standard 
Deviation Min Max

5 32 1 0.089340 0.000000 0.089340 0.089340
5 64 3 0.124786 0.013194 0.115125 0.139819
5 128 3 0.202098 0.024396 0.183219 0.229644
5 256 3 0.349762 0.028278 0.318177 0.372727
5 512 3 0.679784 0.046773 0.652290 0.733790
5 1024 3 1.591121 0.091204 1.487382 1.658699

10 32 1 0.138927 0.000000 0.138927 0.138927
10 64 2 0.235066 0.003973 0.232257 0.237875
10 128 1 0.376475 0.000000 0.376475 0.376475
10 256 2 0.841741 0.010078 0.834614 0.848867
10 512 2 1.777254 0.211305 1.627838 1.926669
10 1024 3 4.025822 0.422803 3.552979 4.367490
16 32 1 0.245722 0.000000 0.245722 0.245722
16 64 2 0.381976 0.017434 0.369648 0.394304
16 256 2 1.145801 0.015168 1.135075 1.156526
16 512 2 2.036489 0.046048 2.003928 2.069050
16 1024 3 6.626270 3.539552 4.487570 10.711893

As you can see from the following graph direct broadcast behaves in the way 

expected. There is a linear relationship; as the data size increases the broadcast time 



increases linearly. The graph also shows that the greater the number of processors the 

greater the broadcast time. 
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The BSP analysis gives the equation  pNg+1, and as such we would expect a linear 

time graph, which is what the graph shows. The results fit the BSP model well. The 

equations for these graphs are as follows. I used the graphic calculator method to 

work out the following equations:

p=5, 1.5036 x 10-3  x  N +  9.1774 x 10-4

p=10, 3.9294 x 10-3 x  N – 0.0877623

p=16, 3.7308 x 10-3 x  N + 0.14663509



I’m ignoring the value for 16 processors, where the data-size was 1024KB, as I 

believe this to be a spurious result, as the other values fit a straight line graph.

The following table shows how close this model is to the experimental results;

Broadcast Type: DIRECT    
  Time /seconds

Number of 
Processors

Data 
size 
/KilobytesMean

Model 1 
Predict Difference Relative error

5 32 0.089340 0.04903294 0.040 45.1%
5 64 0.124786 0.09714814 0.028 22.1%
5 128 0.202098 0.19337854 0.009 4.3%
5 256 0.349762 0.38583934 -0.036 -10.3%
5 512 0.679784 0.77076094 -0.091 -13.4%
5 1024 1.591121 1.54060414 0.051 3.2%

10 32 0.138927 0.0379785 0.101 72.7%
10 64 0.235066 0.1637193 0.071 30.4%
10 128 0.376475 0.4152009 -0.039 -10.3%
10 256 0.841741 0.9181641 -0.076 -9.1%
10 512 1.777254 1.9240905 -0.147 -8.3%
10 1024 4.025822 3.9359433 0.090 2.2%
16 32 0.245722 0.26602069 -0.020 -8.3%
16 64 0.381976 0.38540629 -0.003 -0.9%
16 256 1.145801 1.10171989 0.044 3.8%
16 512 2.036489 2.05680469 -0.020 -1.0%
16 1024 6.626270 3.96697429 2.659 40.1%

The model is very close for 16 processors apart from 1024KB. For 5 processors and 

10 processors, the model fits very closely apart from for 32KB and 64KB, where the 

models prediction is quite far off, up to 73%. However for such small values they are 

the same order of time, which means we can be reasonably confident with the 

reliability.

By comparing direct broadcast to 2-Phase and tree there are several trends, which I 

will now discuss.



Number of 
Processors

Data 
size 
/Kilobytes 2-Phase Tree Direct

5 32 0.085144 0.129666 0.089340
5 64 0.127187 0.179916 0.124786
5 128 0.215030 0.496433 0.202098
5 256 1.073815 0.601885 0.349762
5 512 6.679988 2.461492 0.679784
5 1024 26.430414 7.531307 1.591121

10 32 0.166666 0.278171 0.138927
10 64 0.207706 0.385844 0.235066
10 128 0.294307 0.794472 0.376475
10 256 0.566967 1.696721 0.841741
10 512 2.981274 3.330218 1.777254
10 1024 19.298234 7.663237 4.025822
16 32 0.275207 0.376909 0.245722
16 64 0.333766 0.429697 0.381976
16 128 0.458612 0.711125 
16 256 0.600059 0.995928 1.145801
16 512 1.543545 2.171702 2.036489
16 1024 12.989134 5.151710 6.626270

Firstly the less number of processors the better direct broadcast seems to perform. For 

p=5, direct broadcast has the smallest broadcast times, all accept for 32KB where it is 

0.004 seconds worse than the 2-phase on average. However as the number of 

processors increases direct is best better for small data sizes of 23KB, having a 

smaller broadcast time for 10 and 16 processors. Then the 2-phase broadcast is better 

for size 64-256KB of data for 10 processors. Then for the larger data-sizes for 10 

processors, 512KB and 1024KB direct is better. For 16 processors fro 1024KB tree is 

better but only slightly better than direct.

The results show that for smaller data-sizes direct broadcast is better than the other 

methods. For larger data-sizes direct broadcast also performed better. I believe this is 

due to spurious results for 2-phase and tree methods. Also the testing was carried out 

at a different time, and I believe this may be due to the performance of the network. 

= minimum time



For direct broadcast the test was carried out at a different time, and poor performance 

of the network may have occurred when testing 2-phase and tree.

An odd result is that the direct broadcast actually performs better than the 2 

supposedly optimal methods for broadcasting, potentially this maybe because two 

tests were carried out at different times, all 2-phase and tree were performed over a 

couple of days, the results for the direct method approximately a week later. I did not 

repeat whole test, only carried out testing on the direct broadcast and put this data 

together with the previous test, as you can see from the graphs above.

When N is small (N < 1/(pg – 2g)), it is better to use the direct broadcast method. 

Using g = 237.21 x 10-6 MFLOPS, for 5 processors direct broadcast should be used 

for N less than 11KB (1405 words = 1/g(5-2)), for 10 processors N less than 4KB 

(526 words = 1/g(10-2)) and for 16 processors N less than 2KB (264 words = 1/g(16-

2)). The sizes are very small, and not in range of the test data used.
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2-phase Parameter Analysis

S=2Ng + 2l

S is normalised and gives the number of time steps, therefore it has to be divided by 

the performance measure of the architecture (in MFLOPS). BSP-lib gives the values 

of l and g to be;

s (Mflops/s) P (no procs) l (flops) g (flops/word)
18.128 4 164505.0 237.21

The calculation is t = 2 x N x 256 words/KB x 237.21 FLOPS/word + 164505 FLOPS
18.128 x 106 FLOPS

so t = 6.6997 x 10-3 x N + 9.0746 x 10-3

Note the 256 words/KB, to convert kilobytes to words.

The following table lists all the predicted values together with the experimental 

results, the difference and the percentage error (relative error).

2-Phase

Number of 
Processors

Data 
size 
/KilobytesMean

BSP Model 
Prediction Difference Relative Error

5 32 0.085144 0.223463903 -0.138320 -162.5%
5 64 0.127187 0.437853171 -0.310666 -244.3%
5 128 0.215030 0.866631706 -0.651601 -303.0%
5 256 1.073815 1.724188775 -0.650374 -60.6%
5 512 6.679988 3.439302915 3.240685 48.5%
5 1024 26.430414 6.869531194 19.560883 74.0%

For the tree broadcast we get S = (log p)Ng + (log p)l
So t = S/Sdcs Sdcs = speed of DCS machines
N = datasize
t =   log p  �   x N x  256 words/KB x 237.21 +     log p  �   x 164505  

18.128 x 106

For p =5 then;
t = 1.10049 x 10-2 x N + 2.722 x 10-2

Tree



Number of 
Processors

Data 
size 
/Kilobytes Mean

BSP Model 
Predict 
(s=18.128, 
l=164505, 
g=237.21) Difference

Relative 
Error

5 32 0.129666 0.34880781 -0.219142 -169.0%
5 64 0.179916 0.67039171 -0.490476 -272.6%
5 128 0.496433 1.31355951 -0.817126 -164.6%
5 256 0.601885 2.59989512 -1.998010 -332.0%
5 512 2.461492 5.17256633 -2.711075 -110.1%
5 1024 7.531307 10.3179087 -2.786602 -37.0%

The predicted values using these parameters are no-where near. It is pointless using 

these parameters as realised that these are for SOLARIS machine, and we are using 

AMD machines. Therefore the values that should be the closest are those for a 

Pentium Pro NOW. The values can be found in the architecture section. Ok there is a 

large difference between the predicted by the BSP model and the experimental data. 

However the predictions made are of a similar order. For 2-phase the data-sizes 

<256KB the BSP model overestimates the time to broadcast. For datasizes > 256KB 

the times are underestimated. For tree we see that the times are overestimated for all 

data-sizes up to 1024KB. For 1024 KB the time is underestimated by the BSPmodel. 

It is interesting to see what the model actually predicted;

Number of 
Processors

Data 
size 
/Kilobytes2-Phase  Tree  Direct

5 32 0.223463903< 0.348807809< 0.535968055
5 64 0.437853171< 0.67039171< 1.071936055
5 128 0.866631706< 1.313559512< 2.143872055
5 256 1.724188775< 2.599895117< 4.287744055
5 512 3.439302915< 5.172566326< 8.575488055
5 1024 6.869531194< 10.31790874< 17.15097606

For this data range the BSP model predicts that the 2-Phase algorithm will be better 

then the tree algorithm.



Working out the intersection of the two equations gives the datasize for which Tree 

will be better than 2-Phase:

t2-phase = 6.6997 x 10-3 x N + 9.0746 x 10-3

ttree = 1.10049 x 10-2 x N + 2.722 x 10-2

Intersection therefore when t2-phase = ttree.

6.6997 x N + 9.0746 = 11.0049 x N + 27.22
-18.145 = 4.3052 x N
N = -4.2 KB

Therefore predicts that for values of N > 0 2Phase will perform better than the tree 

broadcast.

This is very interesting because the experimental results show this to be the case for 

all smaller data-sizes. Then for larger data-sizes it shows tree to be better. We can also 

look at what the BSP model predicts for direct Broadcast.

Direct Broadcast

S = pNg + 1
So tdirect = S/Sdcs = (5 x N x 256 Words/KB x 237.21 + 1)/(18.128 x 106)

tdirect = 1.6749 x 10-2 x N + 5.516 x 10-8

Number of 
Processors

Data 
size 
/KilobytesMean

BSP Model 
Predict 
(s=18.128, 
l=164505, 
g=237.21) difference Relative error

5 32 0.089340 0.535968055 -0.446628 -499.9%
5 64 0.124786 1.071936055 -0.947150 -759.0%
5 128 0.202098 2.143872055 -1.941774 -960.8%
5 256 0.349762 4.287744055 -3.937982 -1125.9%
5 512 0.679784 8.575488055 -7.895704 -1161.5%
5 1024 1.591121 17.15097606 -15.559855 -977.9%



For direct broadcast the BSP model has consistently overestimated the time to 

broadcast for all datasizes. Most of the sizes are an order of magnitude out.

tdirect = 1.6749 x 10-2 x N + 5.516 x 10-8

t2-phase = 6.6997 x 10-3 x N + 9.0746 x 10-3

ttree = 1.10049 x 10-2 x N + 2.722 x 10-2

Direct & 2-phase
16.749 x N + 5.516 x 10-5 = 6.6997 x N + 9.0746
10.0493 x N = 9.075
N = 0.90 KB

Direct & tree

16.749 x N + 5.516 x 10-5 = 11.0049 x N + 27.22
4.3052 x N = -18.145
N = -4.2 KB

This shows that for all N > 0 direct direct will perform worse than the tree broadcast. 

For N < 0.90 KB the direct broadcast will perform better than the 2-Phase broadcast.

This is limited by the choice of s, g and l. To this point I’ve used those given by the 

BSP-lib parameter database for p=4, and used it as an approximation for p=5. These 

values were achieved experimentally on a different architecture, and so will vary 

depending on the architecture used. Therefore I’m going to attemp to derive the 

values for the parameters from the experimental data.

Deriving the parameters

Experimental
p = 5, t = 4.9807x10-3x N – 0.0995853
p = 10, t = 6.4912x10-3x N + 7.9197x10-3

p = 16, t = 3.7269x10-3x N + 0.19764633

For 5 processors the experimental and predicted were actually very close. The 
gradient being 4.98 seconds as opposed to 5.02 seconds but the constant is –9.96x10-
2 instead of 2.72 x 10-2. That it is negative is an anomaly, and would indicate that this 
equation is not accurate.



So in form mx + c

c = (log p) l
S

m = (log p) g
           S

x = N/256 (to convert words to kilobytes)

log p = log2 5 = 3

And assuming S = 18.128 x 106. Applying the equation gives us the following values 

for g and l:

Tree
p m c g / FLOPS/word l / FLOPS

5 0.0049807 -0.0995853 117.5652729 -601760.7728
10 0.0064912 0.0079197 114.914525 35892.0804
16 0.0037269 0.19764633 65.97777656 1194310.89

So the g value is very close, but the value for l, latency is inaccurate.

Analysis of repeated direct broadcast

After completing the test on Oscar I went about re-testing the code on the DCS 

machines. I started by tweaking the direct broadcast, the changes I made were that the 

repetitions of code were built in; as such there would be no repetition of start up costs. 

Once the program starts, it has a loop within the begin-end block that repeats the 

code. I did this as I felt it would give more consistent results. The test was run with 

just direct broadcast the results I got were:

Broadcast Type: direct_bcast    
   Time /seconds

Number of 
Processors

Data 
size 
/Kilobytes

Results 
population Mean

Standard 
Deviation Min Max

5 32 10 6.150998 0.141318 5.959550 6.394088
5 64 10 10.808641 0.189258 10.563412 11.220598
5 128 10 19.862605 0.181242 19.655555 20.278371
5 256 10 38.006262 0.127125 37.857871 38.226806



5 512 10 74.595997 0.113442 74.441867 74.761697
5 1024 10 147.673453 0.129154 147.492764 147.907464

10 32 10 13.402549 0.147544 13.211999 13.620541
10 64 10 23.907726 0.245907 23.472449 24.250634
10 128 10 44.291663 0.270328 44.014031 44.867640
10 256 20 85.499574 0.366955 84.939268 86.115177
10 512 10 167.540894 0.385760 167.160904 168.338211
10 1024 10 331.451901 0.469322 331.011989 332.487096
16 32 10 22.446436 0.592830 21.723329 23.344536
16 64 10 39.492787 0.419376 38.784685 39.966624
16 128 10 73.399689 0.644678 72.833290 74.935227
16 256 10 141.733362 0.388334 141.317034 142.470054
16 512 10 278.631036 0.747625 277.964335 279.903082
16 1024 10 552.071977 1.291957 550.886716 555.181606
32 32 10 44.852134 0.465414 44.434334 46.095088
32 64 10 80.956155 0.863045 80.149824 82.283957
32 128 10 150.348145 0.897455 149.895804 152.866773
32 256 10 292.888320 1.192067 291.182915 294.788522
32 512 10 573.908536 0.190179 573.703000 574.283573
32 1024 10 1139.894998 1.944502 1137.202142 1142.240558

The data shows a similar pattern found for the previous testing of direct broadcast. 

The time of broadcast increases with increasing data-size, as you can see from the 

above table e.g. for 5 processors the time increases reasonably linearly from 6.2 

seoncds for 32KB to 148 seconds for 1024KB broadcast. The standard deviation is a 

lot lower than in the previous results, indicating less variation in the results. This is 

due to the change in the code so the program doesn’t have to be restarted each time, as 

such start up and finish costs have no impact on the broadcast times recorded. Also 

there is not such an impact on the network from one test to another.

The following graphs display the data-size versus the time for 5, 10, 16 and 32 

processors.



The results give an exact fit for a linear relationship on each graph. The BSP model 

predicts a linear relationship, as such the results fit closely to the BSP model. This is 
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the same as what was achieved on the first testing of the direct broadcast. The data fits 

even closer to a straight line. The equations for the above graphs are:

p=5, 0.14262734 x N +  1.59353934
p=10, 0.32051821 x N + 3.32159608
p=16, 0.53401106 x N + 5.20149825
p=32, 1.1034519 x N  + 9.72048971

Number of 
Processors

Data 
size 
/Kilobytes Mean Model Error

Relative 
Error

5 32 6.150998 6.15761422 -0.006616 -0.1%
5 64 10.808641 10.7216891 0.086952 0.8%
5 128 19.862605 19.84983886 0.012766 0.1%
5 256 38.006262 38.10613838 -0.099877 -0.3%
5 512 74.595997 74.61873742 -0.022741 0.0%
5 1024 147.673453 147.6439355 0.029518 0.0%

10 32 13.402549 13.5781788 -0.175629 -1.3%
10 64 23.907726 23.83476152 0.072965 0.3%
10 128 44.291663 44.34792696 -0.056264 -0.1%
10 256 85.499574 85.37425784 0.125316 0.1%
10 512 167.540894 167.4269196 0.113974 0.1%
10 1024 331.451901 331.5322431 -0.080343 0.0%
16 32 22.446436 22.28985217 0.156584 0.7%
16 64 39.492787 39.37820609 0.114581 0.3%
16 128 73.399689 73.55491393 -0.155225 -0.2%
16 256 141.733362 141.9083296 -0.174968 -0.1%
16 512 278.631036 278.615161 0.015875 0.0%
16 1024 552.071977 552.0288237 0.043153 0.0%
32 32 44.852134 45.03041579 -0.178282 -0.4%
32 64 80.956155 80.34034187 0.615814 0.8%
32 128 150.348145 150.960194 -0.612049 -0.4%
32 256 292.888320 292.1998984 0.688422 0.2%
32 512 573.908536 574.679307 -0.770771 -0.1%
32 1024 1139.894998 1139.638124 0.256874 0.0%

The following graph is the important one, as it tells us whether we’ve resolved the 

issue of decreasing broadcast time with increasing number of processors. This is 

infact untrue, as the original direct broadcast gave us the expected relationship that the 

more processors the greater the time to broadcast;
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Potentially from this we can extract values fro the parameters g and l. It shows the 

more processors the greater time to broadcast e.g.

Ratio; x2 x1.6 x2
#processors 5 10 16 32
Time for
1024KB:

147.7 331.5 552.1 1139.9

Ratio; x2.2 x1.7 x2.06

The models fit almost exactly for all processors the error is under 0.1 seconds. For 

32KB its under 0.8 seconds. Because the times are quite large this error is 

insignificant. An interesting point to make is that increasing the number of processors 

increases the time to broadcast by a similar ratio.

Ratio; x2 x1.6 x2
#processors 5 10 16 32
Time for
1024KB:

147.7 331.5 552.1 1139.9

Ratio; x2.2 x1.7 x2.06
So if you plot this data you get the following graph.
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Interesting these all fulfil a linear relationship as well.

Its also interesting to note that the timings are a lot more than for the first set of tests 

on the dcs computers. See the previous results, you can see for 5 processors the time 

spans 0.09-1.59 seconds and for 16 processors the time spans 0.25 – 6.63 seconds. 

Whereas on these repeated tests the time spans from 6.15 – 147.7 seconds for 5 

processors and 22.4 to 278.6 seconds for 16 processors. The reason for the significant 

increase in the timing to broadcast for the same code on the same architecture is due 

to the recompiling of the BSP-lib library. BSP-lib was recompiled to allow a 

maximum of 32 processors instead of 16, and this coincided with a drop in 

performance of BSP-lib.



Oscar results

The results from running 2-phase and Tree broadcasts on the Oscar supercomputer 

can be seen in the following tables:

Test Number: 1    
Broadcast Type: 2-Phase  
   Time /seconds

Number of 
Processors

Data 
size 
/Kilobytes

Results 
population Mean

Standard 
Deviation Min Max

5 32 6 0.026221 0.004075 0.021965 0.033214
5 64 6 0.030999 0.007198 0.020674 0.042821
5 128 6 0.049244 0.017831 0.035106 0.082295
5 256 6 0.061215 0.016825 0.041323 0.090759
5 512 6 0.105579 0.010207 0.096170 0.121749
5 1024 6 0.182385 0.024792 0.140065 0.212970
5 2048 6 0.296570 0.043689 0.242812 0.350609
5 4096 6 0.507133 0.113249 0.406707 0.709326
5 8192 6 1.017317 0.157097 0.742261 1.225138
5 16384 6 2.059879 0.248794 1.782320 2.471447
5 32768 6 4.397077 0.438299 3.868737 4.993014
5 65536 6 8.491864 1.087605 6.565834 9.626013

10 32 6 0.076720 0.036961 0.050763 0.145436
10 64 6 0.067935 0.019546 0.033100 0.088339
10 128 6 0.072432 0.017293 0.052166 0.095692
10 256 6 0.099518 0.012649 0.090963 0.125074
10 512 6 0.138486 0.027146 0.109926 0.185631
10 1024 6 0.254884 0.055293 0.183313 0.352770
10 2048 6 0.377843 0.061270 0.297426 0.461644
10 4096 6 0.651093 0.111686 0.496841 0.802074
10 8192 6 1.308338 0.219450 0.950413 1.521338
10 16384 6 2.639103 0.375169 1.932726 2.934422
10 32768 6 5.540556 0.744395 4.776797 6.919716
10 65536 6 11.262612 1.033422 10.079018 13.035292
16 32 6 0.112904 0.023203 0.094112 0.151417
16 64 6 0.132935 0.017642 0.115798 0.164104
16 128 6 0.126031 0.020180 0.099364 0.157335
16 256 6 0.166656 0.048876 0.126326 0.263815
16 512 6 0.192110 0.017457 0.174080 0.211246
16 1024 6 0.268835 0.036781 0.203949 0.313202
16 2048 6 0.464059 0.050628 0.376426 0.519707
16 4096 6 0.788582 0.068419 0.663965 0.853838
16 8192 6 1.372406 0.148614 1.146046 1.503537
16 16384 6 2.828267 0.317841 2.447637 3.328016
16 32768 6 6.368352 1.437385 4.184222 7.897176
16 65536 6 14.857795 1.714152 11.642253 16.569317
32 32 3 0.210655 0.002827 0.207911 0.213559
32 64 3 0.266023 0.062258 0.194280 0.305869



32 128 3 0.256465 0.029281 0.223849 0.280489
32 256 3 0.286169 0.026169 0.257185 0.308062
32 512 3 0.309501 0.024986 0.285786 0.335589
32 1024 3 0.445228 0.039551 0.400225 0.474463
32 2048 3 0.663807 0.094895 0.554236 0.719452
32 4096 3 1.244375 0.054327 1.182610 1.284755
32 8192 3 2.053418 0.078040 1.963319 2.099861
32 16384 3 3.670378 0.059031 3.623904 3.736799
32 32768 3 9.033085 0.157734 8.865194 9.178183
32 65536 3 29.016817 8.772399 20.564938 38.077970

The results for 2-Phase follow the pattern that with increasing number data-size the 

time to broadcast increases. Also the standard deviation is low, and increases as the 

data-size increases. Up to 2MB data broadcast the standard deviation is less than 0.05 

seconds, which is a variation of up to +/-27% for 256KB. As the data-size increases 

the variation increases for data-size of 65MB it is 1.1 seconds, but this is a variation 

of +/-13%.
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The above graph shows the data-size plotted versus the broadcast time, for each of the 

number of processors. Firstly it shows that with increases number of processors the 



time to broadcast increases, as would be expected. It appears that for smaller data 

sizes (below 10MB) the broadcasts times are linear, for datasizes > 10MB the 

broadcast times on 5 and 10 processors increases linearly. For 16 processors there is a 

slight deviation from this relationship, with a slight curve, so the broadcast times for 

32MB and 64MB are slightly larger than expected. For 32 processors the 

experimental results give a straight line up to 16MB, above 16MB there is an obvious 

curve, with the broadcast time for 32MB and 64MB much larger than would have 

been expected.

The above graph shows the smaller data-sizes of 2MB and less, the graph shows for 

each processor the data fits a linear relationship. There are a few anomalies for data-

sizes less than 256KB. For example for 32 processors the time to broadcast jumps 

from 0.21+/-0.0028seconds for 32KB to 0.266+/-0.062seconds for 64KB and then 

falls to 0.256+/-0.029seconds for 128KB. A similar pattern can be seen for these data 

sizes on 16 processors. For 10 processors 32KB is broadcast in 0.077+/-0.04 seconds 

and then the broadcast time falls to 0.068+/-0.02 seconds for 64KB. Firstly for 

broadcast times this small there is little difference between the timings, and as such 
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for the smallest data-sizes the times are not as reliable as for the larger data sizes. 

Secondly there is a large variation in the data values that are slightly larger than 

expected, and it is negligible the amount they vary from what is expected.

As discussed previously for parallel broadcast on the cluster of workstations a linear 

relationship is expected between data-size and time to broadcast. Again on the Oscar 

supercomputer this is not what we find, we find a curve on the graph, which suggests 

the relationship is of polynomial time order. Because the Oscar supercomputer is a 

BSP computer, and can be accurately modelled by the BSP equations it indicates that 

the either the experimental results are wrong or the coding of the broadcast algorithm 

is wrong. There are many repetitions of the results so I believe they give an accurate 

reflection of the programs performance. However the biggest question lies over the 

code itself, the actual time measure is made up of just the broadcast routine for the set 

number of integers, but in this routine there are some local computations that mean 

we are not getting a time for the pure broadcast;

1) The destination into where the integers will be broadcast is registered in one 

superstep. This should perhaps be included in the calculation as it costs a small 

amount of communication cost for the super-step, I do not know the time cost 

for this, I will predict it is no more than broadcasting an integer, therefore is a 

constant (k0 = 2words*g+l).

2) 2 statements, which include 2 assignments, 2 division/multiplications, 2 

subtractions/additions and 1 function call to get the processors id name. I 

believe this is constant time per BSP computation (k1).

3) During the 1st super-step of broadcast processor carries out a for loop. It loops 

p times, and a bsp_put is called, and 2 addition/subtractions and 4 



multiplication/divisions and one if statement. This is thus a constant times p 

(k2p) local computations. 

4) During super-step 2, each processor goes through a for loop p times, and 

carries out a put call. For each loop there are 2 addition/subtractions and 4 

multiplication/divisions, 1 if statement, and 2 function calls to get the number 

of processors and processor 1d. As such there is a constant p times on each 

processor (k3p).

Therefore to the equation S = 2Ng + 2l, I believe the first super-step contributes 2g + 

l. And the local computations contribute k1+k2p+k3p, So the overall equation for 2-

phase is;

S = k1 + p(k2+k3) + 2(N+1)g + 3l

What this means is that for any number of processors there is should be a slight 

increase in the timings compared to what the BSP model predicts, this is by k0 + k1 + 

p(k2+k3). However this is a constant for any data-size. For increasing number of 

processors, it has an increasing contribution to the broadcast times.

To get the non-linear relationship, as we are getting in the above graph we would 

expect that is an extra term that is increasing relative to the data-size to be broadcast, 

but the code doesn’t actually show this. This would suggest that the Oscar super 

computer on which tests where carried out does not necessarily fit the BSP model 
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exactly; BSP assumes that the parameters of g and l are constant for a fixed number of 

processors, but we are seeing that with increasing data size there is an additional term 

increasing which is probably from the performance of the network degrading as we 

increase the data-size to broadcast.

The above graph confirms that the broadcast times are increase linearly with the 

number of processors.  Basically the additional local computational terms are a 

function of the number of processors, as are the parameters g and l, the function being 

linear, and as such combined they give a linear time graph. The parameters g and l are 

also functions of the data-size as well.



Test Number: 1    
Broadcast Type: TREE  
   Time /seconds

Number of 
Processors

Data 
size 
/Kilobytes

Results 
population Mean

Standard 
Deviation Min Max

5 32 6 0.024251 0.007455 0.018154 0.038387
5 64 6 0.067879 0.078309 0.024527 0.225348
5 128 6 0.064101 0.024128 0.028974 0.088472
5 256 6 0.076405 0.024007 0.052881 0.119302
5 512 6 0.080275 0.024466 0.057683 0.125726
5 1024 6 0.156454 0.022193 0.121438 0.174534
5 2048 6 0.260337 0.031414 0.210134 0.293670
5 4096 6 0.504599 0.082642 0.433535 0.659159
5 8192 6 0.775728 0.158901 0.586945 0.958606
5 16384 6 1.833675 0.229139 1.537354 2.162178
5 32768 6 3.460073 0.325175 3.028974 3.832838
5 65536 6 5.496548 0.775166 4.571277 6.554086

10 32 6 0.068361 0.017429 0.058582 0.103410
10 64 6 0.094543 0.046550 0.042307 0.161847
10 128 6 0.109345 0.045297 0.082332 0.200633
10 256 6 0.145979 0.044560 0.103125 0.220394
10 512 6 0.181249 0.046675 0.110926 0.233624
10 1024 6 0.273725 0.027106 0.242395 0.306704
10 2048 6 0.394229 0.039658 0.330514 0.441474
10 4096 6 0.715935 0.074673 0.610991 0.808508
10 8192 6 1.389207 0.101773 1.264367 1.535222
10 16384 6 2.747427 0.440341 2.330267 3.346606
10 32768 6 5.001431 0.588765 4.365764 5.928399
10 65536 6 10.182964 1.129071 8.623834 11.749302
16 32 6 0.140847 0.091205 0.063841 0.318677
16 64 6 0.140031 0.065184 0.093709 0.270584
16 128 6 0.132142 0.044258 0.076852 0.206752
16 256 6 0.161327 0.026364 0.129332 0.204647
16 512 6 0.191124 0.023140 0.164344 0.232180
16 1024 6 0.303888 0.040026 0.256274 0.368060
16 2048 6 0.421648 0.049737 0.347487 0.467174
16 4096 6 0.700671 0.115676 0.506898 0.856564
16 8192 6 1.327377 0.089230 1.231866 1.456102
16 16384 6 2.695816 0.512325 2.213976 3.666296
16 32768 6 5.224560 0.429176 4.753242 5.802970
16 65536 6 9.926595 0.665298 9.270066 11.156470
32 32 3 0.292017 0.075404 0.230181 0.376020
32 64 3 0.285766 0.096434 0.202280 0.391322
32 128 3 0.282742 0.063071 0.210298 0.325430
32 256 3 0.286766 0.046392 0.252250 0.339502
32 512 3 0.445770 0.075821 0.399082 0.533254
32 1024 3 0.471737 0.030065 0.437998 0.495689
32 2048 3 0.672753 0.062144 0.602377 0.720074
32 4096 3 1.105222 0.146289 1.004301 1.272992
32 8192 3 1.876232 0.058403 1.838969 1.943542
32 16384 3 3.604266 0.662782 3.093513 4.353229



32 32768 3 7.150435 0.808407 6.497822 8.054750
32 65536 3 12.667328 0.572733 12.097796 13.243210

The results for the tree broadcast follow the expected pattern. Broadcast times 

increase as the data-size increases and the variation of the times increases with the 

data-size, but the standard deviation is smaller for larger data-sizes than for the 2-

Phase test, e.g. for 32 processors, with 64MB broadcast in 12.7+/-0.6 seconds which 

indicate the results are even more accurate than those for 2-phase broadcast.

Type Tree test 24_12_01 on Osca
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The above graph shows the broadcast time versus the data-size broadcast for tree 

broadcast. The relationship appears to be linear for 10, 16 and 32 processors. For 5 



processors, the time to broadcast seems to tail off, however these results can still be 

approximated with a straight line.

There is a strange results that it appears 64MB is broadcast quicker 16 processors than 

10 processors. The above results table shows that this occurs for all data-sizes greater 

than 2MB, for example 8MB is broadcast in 1.389seconds on 10 processors, and 

1.33seconds on 16 processors. 32MB is broadcast in 5.00seconds on 10 processors 

and 5.22seconds on 16 processors. If you look at the full data range all the timings for 

10 and 16 processors are very close, the standard deviation shows that the results vary 

over the same range. It would be interesting to do further tests to see if this is 

repeated. Potentially this is because for 10 and 16 processors there is the same number 

of super-steps (log2 10  = 4, log2 16  = 4), so the communication and 

synchronisation costs will very close, which would explain this anomaly.

We can be reasonably confident with these results; the timing information is made up 

of just the broadcast routine. Again there is an extra super-step in which the data-type 

in which the data is broadcast into is registered. Then there are several local 

computations, which are adds/mults/ifs and there are a constant number each time the 

routine is run, so this is constant initialisation time. There are two code optimisations 

which may be the reason why the timings are linear relative to the data-size. A 

memory copy is carried out if the data is being sent to the same processor, and 

secondly the high performance put primitive is being used instead of the buffered put 

primitive which is used for the 2-phase broadcast. This could be what is causing the 

unexpected curved appearance in the graph for 2-phase broadcast.

The experimental results show the general trend that 2-Phase broadcast is better for 

smaller data-sizes, and the tree broadcast is better for larger data-sizes. For 5 

processors for 256KB 2-phase takes 0.061s, tree takes 0.076s, then for 512KB 2-



phase takes 0.106s and tree takes 0.080s. For 10 processors the cut off point is 32MB, 

for 16 processors the cut off point is 2MB, up to which 2-phase is better. For 32 

processors it is up to 4MB.

p=5

0.0

0.0

0.0

0.1

0.1

0.1

0.1

0 100 200 300 400 500 600

Data-size / Kilobytes

M
ea

n 
tim

e 
/ s

ec
on

ds

2-PHASE
TREE

The above graph shows an example of this cut off point for 5 processors, being 

256KB, for data-sizes of 256KB and less 2-Phase is better, for data-sizes greater than 

256KB Tree is better. This is apart from for 32KB, where tree is slightly better than 2-

Phase.



This is seen for all the number of processors on 16 processors, the timings are very 

close for small data-sizes. For 16 processors 2-phase and tree exchange being the 

most efficient for 1MB 2-phase is better for 2MB tree is better, then for 256KB Tree 

is better, for all the other between 256-2MB 2-phase is better < 256KB 2-phase is 

better.

Comparing the 2-Phase method with Tree running on the Oscar supercomputer, the 

tree method therefore appears to be better for larger data sizes, this varies depending 

on how many processors the code is running on. This is an unexpected result, 

however it can largely be explained by the different use of the bsp_put primitive. Tree 

uses the high performance non-buffered version, and as such is much more memory 

efficient. I believe the extra term in the 2-phase broadcast which is increasing the 

broadcast times is due to this buffering affect. It would be expected that if the test 

were run using the high performance 2-phase broadcast the graphs would show the 

linear relationship as suggested by the BSP model.

BSP predictions
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Broadcast Type: TREE       
          

# of 
Procs

ceil 
(log2 p)

Data 
size 
/Kilo-
bytes

s / 
(MFLOPS
/second)

g / 
(FLOPS/
word)

l / 
FLOPS

Mean 
time / 
seconds

BSP 
predicted 
time / 
seconds Diff. % error

5 3 32 100.7 11.06 2474 0.024251 0.002773 0.02 88.6%
5 3 64 100.7 11.06 2474 0.067879 0.005472 0.06 91.9%
5 3 128 100.7 11.06 2474 0.064101 0.010871 0.05 83.0%
5 3 256 100.7 11.06 2474 0.076405 0.021667 0.05 71.6%
5 3 512 100.7 11.06 2474 0.080275 0.043261 0.04 46.1%
5 3 1024 100.7 11.06 2474 0.156454 0.086448 0.07 44.7%
5 3 2048 100.7 11.06 2474 0.260337 0.172823 0.09 33.6%
5 3 4096 100.7 11.06 2474 0.504599 0.345573 0.16 31.5%
5 3 8192 100.7 11.06 2474 0.775728 0.691072 0.08 10.9%
5 3 16384 100.7 11.06 2474 1.833675 1.382070 0.45 24.6%
5 3 32768 100.7 11.06 2474 3.460073 2.764066 0.70 20.1%
5 3 65536 100.7 11.06 2474 5.496548 5.528058 -0.03 -0.6%

The above table shows the times calculated for the tree broadcast based on the 

parameters for the Origin 2000 machine from the BSP parameter database. It only 

goes up to 7 processors, so I’ve done the calculations for 5 processors. As you can see 

the predictions get closer the greater the data-size to broadcast. For 23KB there is an 

88.6% error, 0.0027s is predicted and an average time of 0.024 seconds was 

underachieved. The model underestimates the time to broadcast. For 8MB the 

broadcast time was 0.776, the prediction is 0.691 seconds, which is just a 10.9 % 

error. The larger the data size the closer the prediction, for 64MB the broadcast time 

was 5.5seconds, with an error of 0.6%. This shows that the code is not optimal, and 

the local computations that occur do contribute to the running time of the program, for 

smaller data sizes they contribute a lot, for larger data-sizes the affect of these local 

computations is minimal. The difference between the experimental times and the 

predicted times increases with the data-size, this difference could be due to the 

initialisation of the broadcast routine. However it is may be that the parameters are 



not an exact reflection of the actual parameters for the Oscar supercomputer, from the 

experimental data we can derive values for the parameters.

Parameter derivation

From the tree broadcast experimental results we get the following equations;

p = 5, t = 4.9807x10-3x N – 0.0995853
p = 10, t = 6.4912x10-3x N + 7.9197x10-3

p = 16, t = 3.7269x10-3x N + 0.19764633
p = 32, t = 3.7269x10-3x N + 0.19764633

So in form mx + c

c = (log p) l , so  l = c S / (log p)
S

m = (log p) g , so g = m S / (log p)
           S

x = N/256 (to convert words to kilobytes)

And assuming S = 100.7 x 106 FLOPS. Applying the equation gives us the following 

values for g and l:

Tree
Broadcast Type: TREE    
       

# of 
Procs

ceil 
(log2 p)S

m / 
(seconds/kilobyte)c / seconds

g = 
m S / (256 x 
log p)

l =
c S / (log p)

5 3 100.7E+06 8.6848E-05 1.18668E-01 11.387 3.98330E+06
10 4 100.7E+06 1.5344E-04 9.97165E-02 15.089 2.51036E+06
16 4 100.7E+06 1.5077E-04 9.99771E-01 14.827 2.51692E+07
32 5 100.7E+06 1.9261E-04 9.98808E-01 15.153 2.01160E+07

The above table shows the calculation of the g and l parameters based on the 

experimental results for tree broadcast. The value for g give by the parameter database 

is 11.06 FLOPS/word for 5 processors; experimentally g was 11.387 FLOPS/word, 



which is very close. There are no values for the parameters for the number of 

processors greater than 7. The values for the parameter l are not very close to the 

values quoted. For 5 processors l is 3.983 x 106 FLOPS experimentally, whereas the 

parameter database predicts a value of 3867 FLOPS. This may be due to nature of the 

experiment, the influence of an additional super-step and the cost of local 

computations.

High Performance 2-Phase Broadcast

Test Number:  1   
Broadcast Type:  hp_2phase    
    Time /seconds   

Number of 
Processors

Data size 
/Kilobytes N

Results 
population Mean total Mean s1 Mean s2

25 0.00390625 1 10 9.276172 3.011900 6.264271
25 0.0078125 2 10 9.065058 2.976490 6.088568
25 0.015625 4 10 8.875991 2.902829 5.973162
25 0.03125 8 10 9.099346 2.923553 6.175793
25 0.0625 16 10 9.436352 2.893470 6.542882
25 0.125 32 10 14.588146 6.375605 8.212542
25 0.25 64 10 14.787744 6.545176 8.242569
25 0.5 128 10 14.478328 6.366256 8.112072
25 1 256 10 14.717164 6.480327 8.236837
25 2 512 10 14.602264 6.406199 8.196065
25 192 49152 10 27.047601 9.766904 17.280697
28 256 65536 10 32.685620 11.819120 20.866500
28 384 98304 10 41.807176 14.032045 27.775131
28 512 131072 10 49.984990 16.232860 33.752130
28 768 196608 10 69.452770 21.402352 48.050418
28 0.00390625 1 20 10.253344 3.291344 6.962000
28 0.0078125 2 10 10.273329 3.262915 7.010414
28 0.015625 4 10 10.057448 3.270956 6.786492
28 0.03125 8 10 10.550571 3.309067 7.241504
28 0.0625 16 10 10.189140 3.201653 6.987487
28 0.125 32 10 16.273355 7.195607 9.077748
28 0.25 64 10 16.408416 7.347152 9.061264
28 0.5 128 10 16.543485 7.277025 9.266461
28 1 256 9 16.425524 7.286826 9.138698
28 2 512 10 16.240510 7.084491 9.156019
28 4 1024 10 16.725745 7.431902 9.293843
28 8 2048 10 16.893945 7.665404 9.228541
28 16 4096 10 16.242564 7.150392 9.092172
28 64 16384 10 19.167969 7.939524 11.228445
28 128 32768 10 24.726687 9.449196 15.277491



28 192 49152 10 27.449715 10.360614 17.089101
28 256 65536 10 32.685620 11.819120 20.866500
28 384 98304 10 41.807176 14.032045 27.775131
28 512 131072 10 49.984990 16.232860 33.752130
28 768 196608 10 69.452770 21.402352 48.050418
28 1024 262144 10 86.649378 26.066723 60.582656
32 0.0078125 2 9 11.968899 3.685533 8.283366
32 0.015625 4 10 11.592116 3.583650 8.008466
32 0.03125 8 10 11.845251 3.678703 8.166548
32 0.0625 16 10 12.084025 3.705850 8.378175
32 0.125 32 10 18.775649 8.527955 10.247690
32 0.25 64 10 18.260518 8.013729 10.246790
32 0.5 128 10 18.848687 8.508574 10.340113
32 1 256 10 18.697758 8.376075 10.321683
32 2 512 10 18.281658 7.912004 10.369654
32 4 1024 10 18.629047 8.274529 10.354518
32 8 2048 10 18.791349 8.347119 10.444229
32 16 4096 10 18.703896 8.339653 10.364243
32 64 16384 10 21.693639 9.317962 12.375677
32 128 32768 10 25.414498 10.557510 14.856988
32 192 49152 10 31.508677 12.281234 19.227442
32 256 65536 10 34.779502 13.303316 21.476186
32 384 98304 10 43.816580 16.603557 27.213023
32 512 131072 10 52.796656 19.064538 33.732118
32 768 196608 9 73.456648 24.864181 48.592467
32 1024 262144 10 87.931969 30.070793 57.861177

The results give the expected relationship of broadcast time increasing with data-size.
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The above graph shows that the 2-Phase broadcast is now behaving as predicted by 

the BSP model. Also the greater the number of processors, the greater the broadcast 

time.
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For small data-sizes, for example 2.5KB and less the broadcast times stay almost level 

at about 15s for 25 processors, 16.5s for 28 processors and 18.5s for 32 processors.

These results show that the cluster of AMD PCs does in fact act as a BSP computer, 

and can be modelled by the BSP mathematical analysis. The only difference is using 

the unbuffered bsp_put primitive. Thus the buffered bsp_put was causing the 

anomalies we found in the results for previous tests. Although informally it is 

suggested that the standard BSP primitive will cause some performance degragation, 

there is no discussion of the extent of its impact of broadcast times.



Parallel Matrix Multiplication

Theory

Investigation into the parallel broadcast problem went really well, I then went on to 

look at parallel matrix multiplication. Initially I looked at the All pairs shortest path 

problem, I soon found that matrix multiplication was a key component of these 

algorithms, and so decided to first investigate matrix multiplication, the work carried 

out on All pairs shortest path can be found in the appendix. During this part of the 

project I did not make as much progress as I had planned for. I spent time researching 

this. There are two main methods 2D and 3D matrix multiplication, the question being 

which one is optimal. 

During my research I found many other different algorithms for matrix multiplication. 

I began by implementing the sequential matrix multiplication; this would act as a 

control. The next step was to implement the 1D matrix multiplication, which allowed 

me to develop the appropriate routines that could be used for higher order matrix 

multiplication.

7.1.1 Sequential Matrix Multiplication

Sequential matrix multiplication was implemented. I wanted to use this as a control to 

compare the performance of sequential matrix multiplication and parallel matrix 

multiplication. From this I generated some reliable test data that was used to verify 

the output from parallel matrix multiplication.

Matrix multiplication is based on the following pseudo code (see algorithms book):



Matrix-Multiply(A, B)
If colums[A] = [B]

Then error “incompatible dimensions”
Else for i  1 to rows[A]

Do for j  1 to columns[B]
Do C[i,j]  0

For k  1 to columns[A]
Do C[I, j]  C[i,j] + A[i, k].B[k,j]

Return C

i.e. for each I, j = 1, 2, … n we calculate:
n

cij  =  Σ aik . bkj

k=1

Where:

X =

a
i1
 … a

ik
 b

j1
 

b
jk
 

…

c
ij



7.1.2 The Sequential matrix multiplication code

The design decision was made to store the matrices as 1D arrays. For sequential 

matrix multiplication, or naive method, the routines written for the local 

multiplications for parallel matrix multiplication were used. The code can be found in 

the appendix “matrix_seq.c”.

The routines are were:

1) createMatrix(#rows, #cols) – Creates the 2D matrix as a 1D array

2) populateMatrix(#rows, #cols, matrix, row_seed, col_seed) – Populates a 

matrix with data.

3) multiplyMatrices(#rowsA, #colsA, #rowsB, #rowsA, A, B) – Multiply two 

matrices using the naive method.

The only complication is calculating the index numbers of the array, based on 

indexing values in the 2D matrix. To calculate the appropriate index the following 

equation is used:

Index = row_index * #cols + col_index

Note “#cols”, the number of columns, is equivalent to the size of the row.

7.1.3 1D Matrix Multiplication



1D matrix multiplication involves the 1D decomposition of the solution matrix, 

making each processor responsible for a column partition of the solution C. Each 

processor receives a column partition of the B matrix, and receives an entire copy of 

the A matrix. Locally the matrices are multiplied using the naive multiplication 

method. The solution partition that the processor has calculated locally (C_partition) 

is then returned to the source processor.

7.1.4 1D Matrix Multiplication code explained

The 1D matrix Multiplication algorithm is implemented as the code “Matrix1dpar.c”, 

which can be found in the appendix.

Super-step 1 and 2

During the first super-step matrices A and B are populated with data. Then locally on 

each processor, matrices are created. Each processor receives all of matrix A using the 

getMatrixPartition(). During the next super-step the B matrix is partitioned (using the 

setPartitionIndices(), which calculates the partition indices), and then sent to each of 

the processors, using the getMatrixPartition() routine.

X =

Source p
1 Source

A A_local C

B_partition

C_partition
p

1

B



Super-step 3

During the next super-step a sequential matrix multiplication is carried out locally on 

each processor and a partition of the C matrix is created. Using the putMatrixPartition 

routine each processor puts the its partition of the C matrix on to the source processor. 

7.1.5 Communicating the matrices

The matrices are communicated using a series of gets and puts primitives by the two 

routines getMatrixPartition() and putMatrixPartition(). PutMatrixPartition() is a 

wrapper method for bsp_put. The matrices are communicated by splitting them up 

into a several 1D arrays, which are then communicated by a series of puts. This is 

because the matrix doesn’t actually lie in contiguous memory. As such there is a put 

for each row of the matrix partition into the memory of the destination processor. 

There is a put primitive called for every row of the matrix to be communicated, the 

diagram below demonstrates how these routines work.

Partition of the matrix locally is represented as a 1D array:

       

The full matrix is on the destination processor is like this:

As a 1D array =

As a 1D array =

… …

start_i

end_i

start_j end_j



7.1.6 1D Matrix Multiplication BSP Profile

The BSP profile output can be seen below:

Initialisation

Super-step 2

Super-step 3

Super-step 1



This shows the 1D matrix multiplication on 10 processors multiplying A, a 4x3 

matrix, by B a 3x32 matrix. All peaks before step 1 are initialisation cost. During step 

2 matrix A is broadcast to each processor, so 148bytes (4x3x4bytes) are sent to each 

processor. In step 2 a partition of matrix B is sent to each processor. In this case B has 

32 columns and therefore each processor receives a partition of 3 columns (32/10 = 

3r2), so in total 32x3x4 = 384 bytes are sent by processor zero. Each processor then 

receives a 3x3 matrix apart from the last matrix, which receives a 3x5 matrix, which 

can be seen on the profile. In step 3 each processor sends its matrix partition back to 

the source processor. In total about 1 Kilobyte of data is sent in total.

7.1.7 Further work

I carried on and developed several other routines to make higher order matrix 

multiplication. Experiments were carried out on 1D matrix multiplication and 

sequential matrix multiplication see results for this.

This allowed me to develop appropriate routines that would be required for the higher 

degree matrix multiplication. This included how to store a matrix as a 1D array, how 

to store partitions, how to partition a matrix row-wise, column-wise and block-wise, 

and how to broadcast a matrix or partition to all other processors.

The code for 2D matrix multiplication has been included in the appendices, though it 

was not completed.



Experimental Method

Firstly I used the sequential matrix multiplication to create several matrix 

multiplication calculations in order to verify the data produced by parallel matrix 

multiplication. The verification data can be found in the appendix.

The matrix multiplication was then run sequentially, at this point DCS was not 

accessible, so the sequential matrix multiplication was run on my home PC to get 

some data to compare with the experimental data for 1D parallel matrix 

multiplication.

I then developed test scripts to test the 1D matrix multiplication. I chose the number 

of processors to use as 4, 16, 9, 25; they therefore all have integer square routes. This 

was forward planning to enable me to compare the results with 2D matrix 

multiplication.

The following table shows the data sizes I chose:

n=z=m 23 32 45 64 90 128 181 256
#ints (n^2) 529 1024 2025 4096 8100 16384 32761 65536
Data / bytes 4232 8192 16200 32768 64800 131072 262088 524288
Data / Kilobytes 4.133 8.000 15.820 32.000 63.281 128.000 255.945 512.000
Data / Megabytes 0.00 0.01 0.02 0.03 0.06 0.13 0.25 0.50

The table above shows the data-sizes used in the test. The dimensions was set to be 

equal, to allow all the data to be compared easily. The table shows the number of 

integers that will be broadcast in each super-step, and then how much data will be 

communicated. This ranges between 4Kilobytes and 512Kilobytes.

The results and analysis from this test can be found in the following section.



Results and Analysis

Preliminary results

p M z n

Number of 
Integers per 
superstep Kilobytes

Time / 
seconds

4 5 7 4 31.5 0.25 4.259661
4 18 16 12 240 1.88 7.610837
1 500 700 400 315000 2460.94 43
1 500 700 400 315000 2460.94 43
1 500 500 500 250000 1953.13 38
1 5000 500 500 1375000 10742.19 420
4 5 5 5 25 0.20 3.9
4 5 5 5 25 0.20 4.0
4 4 4 4 16 0.13 3.7
4 4 4 4 16 0.13 3.9
4 4 4 4 16 0.13 3.467294
4 40 40 40 1600 12.50 14.6
4 40 40 40 1600 12.50 14.5
4 400 400 400 160000 1250.00 193.6
4 400 400 400 160000 1250.00 193.5
9 40 40 40 1600 12.50 37.7
9 40 40 40 1600 12.50 38.4

16 40 40 40 1600 12.50 69.8
16 40 40 40 1600 12.50 71.2

Its difficult to compare these results for sequential multiplication as there isn’t a broad 

enough set of results. However on 1 processor to multiply two 500by500 matrices 

took 38 seconds, on 4 processors to multiply two 400by400 matrices took 193.6 

seconds. This would indicate that the sequential code is better than 1D parallel. Firstly 

there is not enough data here to make any final conclusions, secondly the code is not 

optimised, and thirdly the timing does not exactly reflect what we are trying to 

measure.

The timing data is for the entire matrixMultiplication1D routine, as such this incurs 

the setting up of the data which populates the matrices with data, which takes n time 

steps, where n is the amount of data. Then the partition sizes are calculated which is a 



couple of additions, multiplications and divisions, and is a constant number of time 

steps. This also includes the time it takes to register and broadcast matrix A and 

partition matrix B to each processor, which takes 2 super-steps. Then the matrices are 

multiplied locally this takes n*n*(n/p) time to process or n^3/p. Finally there is 

another super-step to communicate the matrices back to the source processor. So it is 

the super-step in which the matrices are multiplied locally that is what should have 

been measured. As such a lot of the time is made up from the constant time for 

initialisation steps, and time to broadcast the matrices between processor.

From the table there isn’t enough data to be able to reliably compare all the data, 

however for a matrices dimensions of m=z=n=40 the test was run on 4 9 and 16 

processors. This data can be summarised in the table below:

p m=z=n

Data per 

superstep / 

Kilobytes

average 

time

4 40 12.5 14.6

9 40 12.5 38.05

16 40 12.5 70.5



m=z=n=40 ints (12.5 Kilobytes)
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What this shows is a linear relationship, that with increasing number of processors the 

time to multiply increases. This is not what is expected, increasing the number of 

processors working on matrix multiplication should improve the running time. I 

believe this is due to the affect described above, that the timing includes the time to 

broadcast the data to all the processors and return the data. And as such the time is 

mainly made up of the time to broadcast the data, and this would explain why the 

graph follows a linear relationship as would be expected for broadcasting data.



Data from full test

Test Number:  1    
Multiplication type 1D_matrix_multiplication   
    Time /seconds

#procs n=m=z

Data 
size 
/Kilobytes

Results 
pop. Mean

Standard 
Deviation Min Max

4 23 8.3 5 9.331910 0.030931 9.307257 9.370268
4 32 16.0 5 12.127513 0.043217 12.060373 12.160459
4 45 31.6 5 15.993408 0.048811 15.906439 16.020083
4 64 64.0 5 22.047528 0.202897 21.870942 22.312328
4 90 126.6 5 29.877765 0.035204 29.829636 29.921824
4 128 256.0 5 41.594784 0.066485 41.505253 41.671143
4 181 511.9 5 58.459964 0.116828 58.276315 58.596792
4 256 1024.0 5 83.057880 0.092407 82.970573 83.205222
4 362 2047.6 5 174.282712 0.151177 174.113057 174.461364
4 512 4096.0 5 256.495647 0.701098 255.843671 257.596372
9 23 8.3 5 24.472889 0.212341 24.260662 24.739076
9 32 16.0 5 31.695021 0.444683 31.166134 32.244919
9 45 31.6 5 42.244722 0.182185 42.060768 42.435667
9 64 64.0 5 57.394956 0.047364 57.337851 57.464060
9 90 126.6 5 78.996523 0.673901 78.250103 79.847156
9 128 256.0 5 109.837607 0.332348 109.405102 110.325499
9 181 511.9 5 152.243279 0.814116 151.320527 153.357262
9 256 1024.0 5 213.878477 0.526371 213.320791 214.719896
9 362 2047.6 5 452.830840 0.947336 451.471103 454.114122
9 512 4096.0 5 648.872460 1.134164 647.695282 650.405522

16 23 8.3 5 45.130162 0.575968 44.271315 45.892671
16 32 16.0 5 59.092403 0.683560 58.016339 59.920004
16 45 31.6 5 78.277955 0.374693 77.685083 78.722587
16 64 64.0 5 106.559686 0.238772 106.339473 106.943410
16 90 126.6 5 146.885847 0.666032 145.821218 147.605118
16 128 256.0 5 203.797711 0.916815 202.840241 205.060305
16 181 511.9 5 284.631322 1.268439 283.359162 286.219599
16 256 1024.0 5 402.763983 1.674920 400.332916 404.879716
16 362 2047.6 5 842.861272 1.082132 841.141754 844.090001
16 512 4096.0 5 1195.455364 5.349536 1189.384057 1203.580771
25 32 16.0 5 93.991954 0.619031 93.524798 95.065587
25 45 31.6 5 126.845844 0.606434 126.394196 127.873248
25 64 64.0 5 173.233621 0.581268 172.300525 173.856274
25 90 126.6 5 237.214204 1.244648 235.729130 238.661457
25 128 256.0 5 331.867220 1.559992 329.156507 333.179745
25 181 511.9 5 461.659978 0.613316 460.729823 462.417003
25 256 1024.0 5 646.557881 1.436972 644.703713 648.446592
25 362 2047.6 5 1343.423754 2.987899 1340.326901 1348.079546
25 512 4096.0 5 1915.321985 11.007033 1899.969815 1923.883069



The above table gives the test results for 1D matrix multiplication. They show 2 

patterns firstly that the time to multiply increases with the size of the matrices. 

Secondly the results show that the time to multiply is in fact increasing with the 

number of processors used for any particular data-size.

1D Matrix Multiplication
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The above graph shows how the time to multiply is increasing with the number of 

processors. For example to multiply two 512x512 matrices takes 1024.0seconds on 25 

processors, and takes 1195sec for 16 processors, 648sec for 9 processors, and 256 

seconds for 4 processors. Unfortunately the timings that were recorded were 

unreliable, as they don’t just include the super-step where the local multiplications are 

carried out, it also includes the time for broadcasting. There are 3 super-steps in which 

data is broadcast, in the example mentioned above two 512x512 matrices being 

multiplied leads to approx 4096KB, 256KB and 4096KB being broadcast to each 



processor in each of the 3 super-step respectively. For direct broadcast it takes 552 

seconds for 16 processors to broadcast 1024KB of data, and 141.7 seconds to 

broadcast 256KB. This gives an estimate of 1245seconds to perform this program, 

which is slightly more than the running time we actually achieve. This just 

demonstrates how much of this time is made up of the 3 broadcasting super-steps.  

Conclusion and suggestions for further work

Note this code was not optimised. The sending of the 2 matrices in steps 1 and 2 

could occur in one super-step. Secondly there are two many registration calls. Only 

the matrix that is remote should be registered. This would improve the performance of 

the program. The bsp_put and bsp_get primitives are not high performance and so 

there will some inefficiency caused by the buffering of data.

The final problem is that the timing information is for the duration of the 1d matrix 

multiplication sub-routine, so it includes the timing for the matrices to be created, all 

the data to be sent to all the processors, processed locally, and then returned to the 

source processor. As such the running times are largely made up of the time to 

broadcast the data, rather than the time it takes to multiply the matrix.

However the results collected do show that the sequential matrix multiplication was 

better. This is because the wrong timing measurement was taken for matrix 

multiplication. However the times for the parallel multiplication do not give the total 

running times of these programs, and it is a fact that adding the communication costs 

does increase the total running time significantly. It would be interesting to see how 

using the more efficient 2D and 3D multiplication algorithms will improve this 

situation.





Conclusion

The project was a success on its minor objectives; I increased my knowledge of BSP 

and of parallel computing, as I believe is evident in this report. I learnt how to code 

and run parallel code using the BSP-lib.

I successfully tested code for the parallel broadcast problem, and 1D matrix 

multiplication.  I found that 2-phase was worth than the tree broadcast for larger data-

sizes, and that the 2-phase algorithm was not behaving as the BSP model predicts. 

Further analysis showed what an impact the buffered put had on the experimental 

results, and that using buffered puts the code will not follow the BSP model even on a 

dedicated parallel architecture such as Oscar. I also experimentally derived values for 

the BSP parameters, for the architectures tested on, these were found to be similar but 

more extensive than those found in the BSP parameter database.

I believe I developed a sound process for testing the algorithms implemented, and 

processing the data generated. These processes can be found in the appendices, there 

are still many areas I would have like to investigate further, these areas are discussed 

in the further work section. 

Further Work

Matrix Multiplication

I found the area of matrix multiplication really interesting and it would be good to see 

some good results from this, and see how the practical compares to the theoretical. It 



would be a shame to let the work done go to waste. Also there are may further ideas 

for parallel matrix to work on. Not only could Strassens algorithm be used to further 

optimise matrix multiplication, as the local matrix multiplication routines, or as a 

method for partitioning the matrix. But additionally there is a lot of work from CS321 

course concerning other optimisations for matrix multiplication, and complex matrix 

multiplication, such as using Winigrads method.

DRMA vs. BSMP

All the code I implemented used DRMA (direct remote memory), one of two forms of 

communication that BSP-lib offers. The other form is BSMP (Bulk Synchronous 

Message passing). DRMA is optimised for large amounts of data being 

communicated, whereas BSMP is optimised for small packets of varying sizes. It 

would be interesting to investigate these primitives and how they compare 

experimentally, and in which situations which form of communication is optimal.

Sieve of Eratosthenes

I believe it would be interesting to implement Sieve of Eratosthenes on a parallel 

architecture. How to implement the conceptually distinct processes in SIMD code is 

interesting.

The lowered numbered sieves get most of the traffic, as most numbers can be 

discarded by the smaller sieves, thus larger sieve numbers get little traffic. This raises 

the issue of load balancing. There are two many sieves for each processor to map to 

just one sieve, so each processor would have several virtual processes. It would be 



interesting to see how BSP-lib handles allocating the processors and virtual 

processors in order to balance the load.

Authors Assessment of the Project

I found the area both exciting and extremely interesting. I believe I succeeded in my 

aims for the project, as I developed a good working knowledge of BSP and the BSP-

lib. Additional several interesting conclusions were made about results collected in 

this project, which showed me something new about the BSP model.

Unfortunately not as much progress was achieved, as I would have liked, however 

this is a situation that falls upon anyone conducting a project such as this. There is 

still a lot of work that I wanted to do, both on the parallel broadcast and matrix 

multiplication, and additionally other parallel algorithms. I believe that the project 

raises several interesting ideas for further study. 
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Glossary

Term Definition

BSP Bulk Synchronous Parallelism – Parallel programming 

model/ paradigm. Conceptually programs are made up of 

super-steps, which gives a save, simple coding model and 

mathematical model.

BSP-Lib A BSP software library, which allows BSP code to be 

implemented. See introduction for more information.

Parallel computing When a computational problem is shared and worked on by 

multiple computers/processors. I.e. the processors work in 

parallel.

Sequential computing When a computational problem is worked on by a computer 

on its own.

FLOPS Floating point operations per second. A common 

benchmark measurement for rating the speed of a micro 

proessor.

MFLOPS Mega FLOPS = 1 Million FLOPS

GFLOPS Giga FLOPS = 1 Billion FLOPS

DCS Lab Department of Computer science computer laboratory, 

containing over 70 networked AMD PCs.

SIMD Single Instruction Multiple Data, this is when you have the 

same piece of code working on several processors on 

different data in parallel.



Appendices

Unforeseen Problems during coursework

1) No access to Topaz for Several weeks – 2/10/02

 During the Christmas holidays, therefore worked on research

 Solution, waited until returned to university on 7/01/02

2) BSP-lib not compiling (8/1/02 – 11/01/02)

 Didn’t need to use significantly, it resolved itself by the 11th January

3) DCS Topaz non-accessible – 8/02/02

4) BSP-lib performance degradation (after February)

 On rebuilding BSP-lib to allow for a maximum of 32 processors instead of 16, 

caused the performance of BSP-lib to fall.

 Also affected how strict the compilation was, leading to changes required for several 

programs that were previously working. Strict on use of bsp_init() and an additional 

bsp_sync() was required at the end of any bsp_begin() – bsp_end() block.

 Additional peaks appearing on profile graphs were due to initialisation, and were not 

the programs behaving incorrectly.

5) Home PC infected with Boot virus (11/03/02 – 12/03/02)

 Computer was rebuilt over 2 days

 Some data recovered from hard drive, and backups from DCS.

6) No access to lab machines during Easter holiday

 Reason for access was to get some coursework files and to run a few tests to obtain 

values for the parameters s, l and g.



 Computers had been switched off, were turned back on, by request, on 12th April. So 

available for one week of the Easter holidays.

7) Virus and windows corrupt on home PC (27/04/02 - 28/4/02)

 Unrecognised virus by Norton utilities

 No data lost, windows rebuilt

Data conversion

1 word = 4 Bytes, on a 32-bit processor. (1word = 32 bits = 4 Bytes)

1 Byte = 8 bits

1 Kilobyte = 1024 Bytes

1 Kilobyte = 256 words

1 Integer = 8 Bytes



Processing the data

The test data from the output logs from the test programs were manually extracted into a MS Excel 

spreadsheet. On the first worksheet the data was put into the following table:

Broadcast 

type

N Size/bytes Size/kilobytes P Time 

/seconds

…

On the next worksheet the data as processed for the statistical content, using array formulas, columns 

were added for the population (number of results), the average time, the standard deviation, and the 

minimum and maximum values.

The processed data was then put in a series of summary data tables, from this I generated the 

appropriate charts and tables that can be seen in the report.

Writing a simple BSP program

#include “bsp.h”
#include <stdio.h>
#include <stdlib.h>

void spmd_start();

int npes;

void spmd_start() {
 
   bsp_begin(npes);
   //PARALLEL CODE BEGIN

   printf(“Hello world from processor %d\n”, bsp_pid());
   bsp_sync();

   //PARALLEL CODE END
   bsp_end();
}

void main(int argc, char **argv) {



   bsp_init(spmd, argc, argv);
   npes = 5;
   spmd_start();

   exit(0);
}

BSP code is SPMD, that is single processor multiple data, so all parallel code will be run on each of the 

processors. A single processor runs the above code the bsp_init() function is used to initialise the BSP-

library, and allows for dynamic process generation whereby each processor begins executing the code 

at the call to bsp_begin(). Note all processors will run all the code if bsp_init() is not used. Npes is the 

number of processors to be run. The spmd_start() function contains the code to be run parallel. At 

bsp_begin(npes) npes processors are started, each processing the code, which follows until the 

bsp_end() function is called. In this case the program prints a short message with each processors id 

number. A bsp_sync() is called, which calls the barrier synchronisation, which allows the processors to 

synchronise, and then exit when the bsp_end() method is called.

Compiling and running BSP programs

To compile use the bspcc program, this should be found in the bin directory of the B

SP-lib implementation you are using, set the path value appropriately.

 To compile code to run parallel, use the appropriate bspcc;

bspcc –o <executable filename> <filename>.c

 To compile code to run on a single machine use the shmemsysv switch;

bspcc –o -shmemsysv <executable filename> <filename>.c

Running the program parallel, first time you will need to do the following things.

1. Create a .rhosts file, with the computer host name, in the root directory. E.g.lab-05 csuki



2. Create a .bsptcphosts file, with each of the names of the machines in the following format;

host(lab-04);
host(lab-03);
host(lab-10);

This file is used to give the names of all computers to use within the cluster you are using.

3. Set the environmental variables under each machine. The best way is to change the 

environment variables in your set up file. Alternatively log on to each computer to be used by 

the running code and type;

export PATH=$PATH:~tiksin/BSPX86/bin
export BSP_DEVICE=MPASS_UDPIP

Note you should put in the appropriate path directory to the bin directory of the BSP-lib 

implementation you are using.

4. Run the BSP-lib daemon on each machine, this will handle the communication amongst the 

machines. You can log on to each machine and run bsplibd, alternatively you can use the all 

switch, which will run bsplibd on all machines listed in the .bsptcphost file.

You can the run the programs parallel by using bsprun.

bsprun –noload –npes 4 ./executable_name

The noload switch turns off the load manager. The npes switch sets the number of processors to be 

started.

BSP Profile graphs



Generating the BSP Profile graphs

Compile the code with the “–prof” flag. Then use the “bspprof” program as follows:

Bspprof –title ‘<title>’ PROF.ps <filename>.ps

Reading the BSP Profile graphs

Above is an example of the BSP Profile graph. The top graph shows the amount of data sent versus 

time by each processor. The bottom graph shows the amount of data received versus time per 

processor. As you can see from the graph during super-step 7, one processor sends out approximately 

1000 Kbytes of data, which is shared equally between each of the other processors.

1.

2.

3.

4. 5.

6.

8.

7.



1. The beginning of each super-step is marked by a numbered diamond, which appears in the key 

see 2.

2. Table containing each of the super-step references, with the number of each super-step, the 

filename of the program the super-step is called from, and the line number from that file.

3. Key showing each processor represented by a particular shading pattern.

4. White space indicates time spent processing, and in this case there has been no data 

transferred between processors.

5. Duration of a super-step, between diamonds labelled 7 and diamond labelled 8. You can see 

data is transferred during this super-step.

6. The bar is divided into different shaded areas, each representing the data either sent as in this 

case or retrieved by a particular processor.

7. This bar shows the amount of data sent by each processor. In this case it shows one processor 

is sending out 1000 Kbytes of data.

8. This bar shows the amount of data received by each processor. In this case it shows each 

processor receives an n/p (amount of data divided by the number of processors) fraction of the 

data, approximately 100 Kbytes.

All Pairs Shortest Path

Initially I looked at the all pairs shortest path problem, implementing parallel. There are two main 

methods I looked at based on those discussed in Dr Alex Tiskin’s thesis, the two methods being Floyd 

Warshall and repeated squares methods. The Floyd-Warshall method is based on Gaussian Elimination, 

the repeated squares method involves squaring the matrix representation of the graph, taking all paths 

of two, then squaring again. The repeated squares method offers a marginal asymptotic improvement; 

the problem is whether this occurs in practice.



I began by looking at the algorithms on a sequential computer, the repeated squares method was 

implemented, which I’ve included in the appendix for completeness. Both algorithms relate closely to 

matrix multiplication, I believed the best method to make these algorithms parallel was to look at the 

underlying parallel matrix multiplication. I then chose to investigate parallel matrix multiplication. 

Doing some research on this I found it looked very interesting, and so shifted my focus on to matrix 

multiplication. The plan was to come back to APSP if I had any time at the end of the project.

Source code Floppy disk

The source code and raw data can be found on the floppy disk attached to the project 
report. This disk contains 2 zip files, extracting the files will put them into folders to 
make it easy to browse the appropriate code or data.

Project presentation

The project presentation slides can be found at the back of the project report.
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